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The idea is very straightforward: find and define all locations in space at a cer-
tain time of all substituents of a bioactive molecule that contribute to its biologi-
cal activity. The readout would be a three-dimensional map – with respect to
structure – that represents a minimal set of substituents which would adapt to
a negative casting mold of the target binding site. By estimating or calculating
the electronic and geometric properties of the substituents at their locations you
would expand the 3D map to multiple dimensions. You call it a pharmacophore.
After that, theoretically, you would walk through the Periodic Table and create a
set of substituents, tied together by an appropriate backbone to fulfill all elec-
tronic and steric requirements of the pharmacophore. Finally, you obtain a new
chemical entity with good prospects for activity at the target of choice.

But you get more. A “map” is a tool that relates objects to each other. These
relations may be distances as they appear on a roadmap, it may be frequencies
or densities on a web exploration map or it may be metabolism–emotion rela-
tionships in a brain map. Hence the pharmacophoric map can be used as a fil-
ter by matching the property vectors and a library of synthetic and/or virtual li-
gands, sorting out putative binders.

Well, “Before the gates of excellence the high gods have placed sweat; long is the
road thereto and rough and steep at first” (Hesiod, Work and Days).

In the present book, Thierry Langer and Rémy Hoffmann give us a descrip-
tion of the long road with a firm sight on what can be done now and what is
still to be achieved. Camille Wermuth, a doyen of the field, starts the arc of con-
tributions shaping the history of the pharmacophore concept. The subsequent
chapters are grouped into two major parts: “Pharmacophore Approaches” and
“Pharmacophores for Hit Identification and Lead Profiling: Applications and
Validation”. Much attention is devoted to the problem of alignment and cost of
energy. The contributions face the problems not only from the small molecule,
the ligand’s view, but also from the complementary side, the receptor’s binding
site. Experience from both industrial research and development laboratories and
academic research is covered, especially in the applications and validation part,
which gives the reader a feeling for the feasibility and implementation of the
approaches and bridges the gap between theory and practice.
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of Wiley-VCH for cooperative and easy collaboration and their invaluable sup-
port in this project.

April 2006 Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Zürich
Raimund Mannhold, Düsseldorf
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Pharmacophores! Behind this simple word and concept that may be seen some-
how reductionist, a vast amount of information about bioactive molecules and
their structure–activity relationships is hidden, but available. Both of us had the
privilege of having been exposed first to these important tools in medicinal
chemistry by Professor Camille-Georges Wermuth some 20 years ago at the fac-
ulty of Pharmacy of the Université Louis Pasteur in Strasbourg. In this aca-
demic laboratory, several drug molecules have been developed that were success-
fully brought to the market. The pharmacophore concept was used always keep-
ing in mind the need to understand, explain and predict molecular interactions
with the targets in addition to structure–activity relationships. Its practical appli-
cability for medicinal chemists made it an excellent communication tool be-
tween modelers and synthetic chemists. We are therefore grateful to Professor
Wermuth, who has kindly accepted to write the first chapter of this book.

Since that time, we have been working in the context of using and developing
tools and methods for rational molecular design, in both academic and indus-
trial environments. We have seen several key changes in paradigms, such as
combinatorial chemistry and associated HTS techniques, structure-based design
strongly related to the ever-increasing number of characterized 3D structures of
target proteins and the emerging virtual screening technologies. Pharmaco-
phores have somehow been neglected in the last decade, although some gold
standard tools were already available to the research community that have un-
fortunately not been further developed. However, as the hype about both struc-
ture-based design and large-scale HTS has flattened, a new area for pharmaco-
phore tools obviously has begun.

As outlined in this book, several innovative tools and approaches for pharma-
cophore-based modeling and screening have emerged recently in the literature.
Since the last textbook on pharmacophores and their usage in drug discovery,
edited by Osman F. Güner in 2000, considerable progress has been achieved
and also a large number of success stories in different application areas have
clearly demonstrated the power of this approach. We felt that now was the right
time to summarize these developments and their applicability. Therefore, we
are grateful to the series editors, Professors Hugo Kubinyi, Gerd Folkers and
Raimund Mannhold, for having invited us to edit a book focusing on this excit-
ing research area. Starting with an introductory historical overview, ligand-based

XV

Pharmacophores and Pharmacophore Searches. Edited by T. Langer and R. D. Hoffmann
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31250-1

A Personal Foreword



approaches, including 3D pharmacophores and 4D QSAR, are discussed, and
also the concept and application of pseudoreceptors. Another section on struc-
ture-based approaches includes pharmacophores from ligand–protein com-
plexes, FLIP and a chapter on 3D protein-ligand binding interactions. The
whole is rounded off with a complete section devoted to applications and exam-
ples, including modeling of ADME properties.

The intention of this book is to provide the reader with the different aspects
of pharmacophores and pharmacophore-based screening in the drug discovery
and development context. Each chapter is written by well-recognized experts in
their respective fields. We take the opportunity to thank them all for their con-
tributions to this book. It was a privilege to interact with them in order to bring
this ambitious project to fruition. We hope that this book will contribute to
stimulating further developments in this area, since we feel that there is still
room for new technologies and improvements around pharmacophores. Happy
reading!

Innsbruck and Paris, March 2006 Thierry Langer
Rémy D. Hoffmann

A Personal ForewordXVI
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Camille G. Wermuth

Since the appearance of computer-aided structure–activity studies, the term
“pharmacophore” has become one of the most popular words in medicinal
chemistry. However, depending on their scientific background and/or traditions,
the different medicinal chemistry groups attribute various meanings to this
term. Therefore, it appeared necessary to devote a brief paragraph to the defini-
tion of the word pharmacophore, and this is followed by a historical perspective
and finally by some comments from a medicinal chemistry practitioner.

1.1
Definitions

Many authors use the term “pharmacophores” to define functional or structural
elements possessing biological activity. This does not correspond to the official
definition elaborated by an IUPAC working party and published in 1998 [1]: A
pharmacophore is the ensemble of steric and electronic features that is necessary to en-
sure the optimal supramolecular interactions with a specific biological target structure
and to trigger (or to block) its biological response. As a consequence:
1. The pharmacophore describes the essential, steric and electronic, function-de-

termining points necessary for an optimal interaction with a relevant pharma-
cological target.

2. The pharmacophore does not represent a real molecule or a real association
of functional groups, but a purely abstract concept that accounts for the com-
mon molecular interaction capacities of a group of compounds towards their
target structure.

3. Pharmacophores are not specific functional groups (e.g. sulfonamides) or
“pieces of molecules” (e.g. dihydropyridines, arylpiperazines).

A pharmacophore can be considered as the highest common denominator of a
group of molecules exhibiting a similar pharmacological profile and which are
recognized by the same site of the target protein. However, despite the official
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definition and the remarks made above, many medicinal chemists continue to
call pharmacophores some specific functional groups, especially if they appear
to be often associated with biological activity.

1.1.1
Functional Groups Considered as Pharmacophores: the Privileged Structure Concept

The retrospective analysis of the chemical structures of the various drugs used
in medicine led medicinal chemists to identify some molecular motifs that are
associated with high biological activity more frequently than other structures.
Such molecular motifs were called privileged structures by Evans et al. [2], to
represent substructures that confer activity to two or more different receptors.
The implication was that the privileged structure provides the scaffold and that
the substitutions on it provide the specificity for a particular receptor. Two
monographs deal with the privileged structure concept [3, 4].

Among the most popular privileged structures, historical representatives are
arylethylamines (including indolylethylamines), diphenylmethane derivatives,
tricyclic psychotropics and sulfonamides. Dihydropyridines [5], benzodiazepines,
[2, 5], N-arylpiperazines, biphenyls and pyridazines [6] are more recent contribu-
tions.

A statistical analysis of NMR-derived binding data on 11 protein targets indi-
cates that the biphenyl motif is a preferred substructure for protein binding [7].

1.2
Historical Perspective

1.2.1
Early Considerations About Structure–Activity Relationships

In his interesting Edelstein award lecture, presented at the 224th American
Chemical Society Meeting in Boston, MA, in August 2002 and entitled “To
Bond or Not to Bond: Chemical Versus Physical Theories of Drug Action”, John
Parascandola [8] relates the early history of structure–activity relationships.

Regarding drug selectivity, he cites Earles, who states: “The fact that drugs may
exert a selective action on specific organs of the body had long been recognized
empirically and expressed vaguely in the traditional designation of certain reme-
dies as cordials (acting on the heart), hepatics (acting on the liver), etc.” [9].

One of the earliest to recognize structure–activity relationships was Robert
Boyle in 1685, who tried to explain the specific effects of drugs in terms of me-
chanical philosophy by suggesting that since the different parts of the body have
different textures, it is not implausible that when the corpuscles of a substance
are carried by the body fluids throughout the organism, they may, according to
their size, shape and motion, be more fit to be detained by one organ than an-
other [10].
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Later, at the turn of the 20th century, the German scientist Sigmund Fränkel
argued that the selective action of drugs can only be understood by assuming
that certain groups in the drug molecule enter into a chemical union with the
cell substance of a particular tissue. Once fixed in the cell in this manner, the
drug can exert its pharmacological action [11].

Despite this pioneering view, the understanding of the nature of chemical
bonding and of cellular structure and function was still in its infancy at the be-
ginning of the 20th century. Thus there was significant controversy over
whether the physical or the chemical properties of a substance could best ex-
plain its pharmacological action and over the value of attempts to relate the
physiological activity of a drug to its chemical structure. As an example, in 1903
Arthur Cushny, Professor of Materia Medica and Therapeutics at the University
of Michigan, published a paper in the Journal of the American Medical Associa-
tion entitled “The pharmacologic action of drugs: is it determined by chemical
structure or by physical characters?” [12]. To a chemist today, such a question
might seem odd. Finding convincing answers to it became possible only after
the discovery of the existence and role of pharmacological receptors.

1.2.2
Early Considerations About the Concept of Receptors

The idea that drugs act upon receptors began with Langley in 1878 [13], who in-
troduced the term “receptive substance” [14]. However, the word “receptor” was
introduced later, by Paul Ehrlich [15, 16]. During the first half of the 20th cen-
tury, several observations highlighted the critical features associated with the
concept of receptors [17].

“Three striking characteristics of the actions of drugs indicate very strongly
that they are concentrated by cells on small, specific areas known as receptors.
These three characteristics are (i) the high dilution (often 10–9 M) at which solu-
tions of many drugs retain their potency, (ii) the high chemical specificity of
drugs, so discriminating that even d- and l-isomers of a substance can have dif-
ferent pharmacological actions, and (iii) the high biological specificity of drugs,
e.g. adrenaline has a powerful effect on cardiac muscle, but very little on striatal
muscle.” [17].

1.2.3
Ehrlich’s “Magic Bullet”

Selective interaction of a drug molecule with the corresponding receptor was
not always accepted. One of the most brilliant demonstrations came from Paul
Ehrlich’s discovery of salvarsan, which gave rise to the concept of a chemothera-
peutic “magic bullet” against specific infectious organisms. Beginning with dyes
and later extending his studies to include arsenical compounds, Ehrlich modi-
fied the chemical structure of numerous molecules to produce effective drugs
against trypanosome and later spirochete infections. They tested hundreds of
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compounds before they came upon one, number 606, that Ehrlich thought was
the chemotherapeutic agent he was searching for. Clinical tests confirmed the
potential of the drug in treating syphilis and trypanosomiasis. The discovery
was announced in 1910. Ehrlich named the drug salvarsan. The German physi-
cian, bacteriologist and chemist Paul Ehrlich shared the Nobel Prize in 1908
with Ilya Metchnikoff for their contributions to immunity.

1.2.4
Fischer’s “Lock and Key”

Ehrlich’s seminal discoveries reinforced the assertion made in 1894 by another
brilliant German chemist, Emil Fischer. In a publication dealing with the effect
of glucoside conformation on the interaction with enzymes, he wrote: “Um ein
Bild zu gebrauchen, will ich sagen, dass Enzym und Glucosid wie Schloss und
Schlüssel zu einander passen müssen, um eine chemische Wirkung auf einander
ausüben zu können” (To illustrate, I would like to say that enzyme and glucoside
must fit together like lock and key, in order to have a chemical effect on each
other) [18]. The image of “lock and key” is still used today, even if it suggests a ri-
gid structure of the receptor or enzyme protein. Probably another image, such as
“hand in a glove”, would be more accurate. Effectively, in addition to the steric
complementarity, it would account for chirality and receptor flexibility.

1.3
Pharmacophores: the Viewpoint of a Medicinal Chemist

Even before the advent of computer-aided drug design, simple pharmacophores
were described in the literature and considered as tools for the design of new
drug molecules. Initial structure–activity relationship considerations were acces-
sible in the 1940s thanks to the knowledge of the bond lengths and the van der
Waals sizes which allowed the construction of simple two-dimensional model
structures. With the availability of X-ray analysis and conformational chemistry,
access to three-dimensional models became possible in the 1960s.

1.3.1
Two-dimensional Pharmacophores

1.3.1.1 Sulfonamides and PABA
The recognition of the quantitatively almost unmatched ability of p-aminoben-
zoic acid (PABA) to oppose the bacteriostatic efficiency of the sulfonamides led
Woods and Fildes [19, 20] to formulate the fundamentals of the theory of meta-
bolite antagonism (Fig. 1.1).
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1.3.1.2 Estrogens
Another early achievement (Fig. 1.2) was the synthesis and the pharmacological
evaluation of trans-diethylstilbestrol as an estrogenic agent showing similarities
with estradiol [21]. Here again the proposed model was two-dimensional [22],
despite the fact that the non-planar conformation of estradiol was already
known.

1.3.2
An Early Three-dimensional Approach: the Three-point Contact Model

When an asymmetric center is present in a compound, it is thought that the
substituents on the chiral carbon atom make a three-point contact with the re-
ceptor. Such a fit insures a very specific molecular orientation which can only
be obtained for one of the two isomers (Fig. 1.3). A three-point fit of this type
was first suggested by Easson and Stedman [23], and the corresponding model
proposed by Beckett [24] in the case of (R)-(–)-adrenaline [= (R)-(–)-epinephrine].
The more active natural (R)-(–)-adrenaline establishes contacts with its receptor
through the three interactions shown in Fig. 1.3.

1.3 Pharmacophores: the Viewpoint of a Medicinal Chemist 7
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critical distances. The incorporation of the sulfonamide instead
of PABA inhibits the biosynthesis of tetrahydrofolic acid.
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In simply assuming that the natural (R)-(–)-epinephrine establishes a three-
point interaction with its receptor (A), the combination of the donor–acceptor
interaction, the hydrogen bond and the ionic interaction will be able to generate
energies of the order of 12–17 kcal mol–1, which corresponds [25] to binding
constants of 10–9–10–12. The less active isomer, (S)-(+)-epinephrine, may estab-
lish only a two-point contact (B). The loss of the hydrogen bond interaction
equals �3 kcal mol–1, hence this isomer should possess an �100-fold lesser af-
finity. Experience confirms this estimate. If we consider less abstract models, it
becomes apparent that the less potent enantiomer also is able to develop three
intermolecular bonds to the receptor, provided that it approaches the receptor in
a different manner. However, the probability of this alternate binding mode to
trigger the same biological response is close to zero.

1.3.2.1 Clonidine and Its Interaction with the �-Adrenergic Receptor
In the early 1970s, it was accepted that the hypotensive activity of clonidine was
due to its direct interaction with the central norepinephrine receptor [26]. To
trigger the �-adrenergic receptor, it was accepted that norepinephrine binds to
its receptor by means of three bonds [27, 28]:
1. an ionic bond between the protonated amino function and an anion (carboxy-

late, phosphate) of the receptor active site;
2. a hydrogen bond between the secondary alcoholic hydroxyl and a, NH–CO

function of the receptor;
3. a stacking (or charge transfer?) between the aromatic ring and an electron-de-

ficient ring such as a protonated imidazole of a histidine residue.

In addition, it was known that the phenolic hydroxyls are not essential for � ac-
tivity and that the cationic head should not be too bulky.

Pullmann et al. [29], in their model of the �-adrenergic receptor, found the
following critical intramolecular distances: D= 5.1–5.2 Å from N+ to the center
of the aromatic ring and H= 1.2–1.4 Å for the elevation of the positive charge to
the plane of the aromatic ring (Fig. 1.4).

1 Pharmacophores: Historical Perspective and Viewpoint from a Medicinal Chemist8
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At first glance, the similarity between clonidine and norepinephrine was not
evident; However an NMR structural study of clonidine demonstrated the re-
stricted rotation resulting from o- and o�-substitution and imposing a quasi-per-
pendicular orientation of the imidazolic ring towards the phenyl ring [30]. As a
result, clonidine can yield the same kind of interactions as norepinephrine.

Taken together, the examples shown above illustrate typically some pre-com-
puter attempts to elucidate pharmacophoric patterns usable as guides for the
design of new drugs. They prepared the minds for Garland Marshall’s seminal
publications (see references in [31, 32]) on computer-aided pharmacophore iden-
tification and all the derived applications that will be presented in the following
chapters.

1.3.3
Criteria for a Satisfactory Pharmacophore Model [32]

To be recognized as a useful tool, a pharmacophore model has to provide valid
information for the medicinal chemist exploring structure–activity relationships.
1. First, it has to highlight the functional groups involved in the interaction with

the target, the nature of the non-covalent bonding and the different inter-
charge distances. This means that worthless images of ribbon and spaghetti
models [33], without indication of the molecular features of the interacting
partners, have to be avoided. This is true also for many unnecessary and
opaque theoretical digressions. The model also has to show some predictive
power and lead to the design of new, more potent compounds or, even better,
of totally novel chemical structures, not evidently deriving from the transla-
tion of structural elements from one active series into the other. An interest-
ing aspect of pharmacophore-based analogue design is referred to as scaffold
hopping. It consists in the design of functional analogues by searching within
large virtual compound libraries of isofunctional structures, but based on a
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different scaffold. The objective is to escape from a patented chemical class in
identifying molecules in which the central scaffold is changed but the essen-
tial function-determining points are preserved and form the basis of a rele-
vant pharmacophore [34].

2. The second criterion for a valid pharmacophore model is that it should discri-
minate stereoisomers. Stereospecificity is one of the principal attributes of
pharmacological receptors and a perfect stereochemical complementarity be-
tween the ligand and the binding-site protein is an essential criterion for high
affinity and selectivity. A convincing example of enantiomeric discrimination
was observed for GABA-A receptor antagonists [35].

3. In a similar manner, the ideal model should distinguish between agonists
and antagonists. This is relatively easy for the specific category of antagonists
which, according to Ariëns et al. theory [36], derive from the agonists simply
through the addition of some supplementary aromatic rings which play the
role of additional binding sites (e.g. the passage from muscarinic agonists to
muscarinic antagonists [37] or from GABA agonists to GABA antagonists
[35]). The discrimination between the two categories becomes less evident
when the passage from agonist to antagonist relies on relatively subtle
changes such as one observes for glutamate, oxotremorine and benzodiaze-
pine antagonists.

4. Sometimes a good pharmacophore model can explain apparently paradoxical
observations, e.g. the unexpected affinity reversal found in R- and S-enantio-
mers of the sulpiride series on changing N-ethyl to N-benzyl derivatives [38].

5. Finally, it has to account for the lack of activity of certain analogues of the ac-
tive structures. The knowledge of structural or electronic parameters leading
to poorly active or inactive compounds is a cost-lowering factor that allows
the number of compounds to be synthesized to be reduced.

1.3.4
Combination of Pharmacophores

Some highly specific mono-target drugs have clearly proven the usefulness of
mono-target medicine. Examples are phosphodiesterase 5 inhibitors such as sil-
denafil, the �-1a antagonist drugs such as tamsulosine, selective COX-2 inhibi-
tors such as celecoxib and kinase-specific anticancer drugs such as imatinib.
However, in addition to one-target drugs, clinicians are more and more con-
vinced that modulating a multiplicity of targets can be an asset in treating a
range of disorders. An extreme example of a multi-target drug is clozapine,
which exhibits nanomolar affinities for more than a dozen different receptors.

As a consequence of this trend, an increasing number of publications reflect
an awakening of interest in the rational design of multiple ligands and may
suggest an ongoing re-evaluation of the “one disease, one drug” paradigm which
has dominated thinking in the pharmaceutical industry for the last few decades.
Although there is little chance of switching back to the animal-centric approach
of the past, it is now widely recognized that high specificity for a single target

1 Pharmacophores: Historical Perspective and Viewpoint from a Medicinal Chemist10



may not deliver the required efficacy versus side-effect profile and, in many
cases, a balanced activity at several targets may produce a superior effect.

In a recent paper, entitled “From magic bullets to designed multiple ligands”,
Morphy et al. [39] discuss the opportunity and the advantages attached to the
design of ligands acting on two (or more) specific targets, such intentionally de-
signed multiple ligands (DM ligands) being opposed to serendipitous multiple li-
gands. It is highly probable that computer-driven combinations of two pharma-
cophores can lead to the design of new active entities combining in one mole-
cule the critical structural elements of two partners.

1.4
Conclusion

For medicinal chemistry practitioners, the term “pharmacophore” covers two
different meanings: “pieces of molecules conferring activity, often referred too
as privileged structures” and “the highest common denominators of a group of
molecules exhibiting a similar pharmacological profile and which are recog-
nized by the same site of the target protein”. The knowledge of the first mean-
ing and its daily use belong to the medicinal chemists’ “culture générale”.

The second meaning aims to approach drug design by rational, computer-
aided reasoning. It usefulness covers three major domains. The first is the es-
tablishment of a relevant pharmacophore model, consistent with structure–activ-
ity relationships in a series of molecules and allowing the design of optimal li-
gands. The second is scaffold hopping, which consists in the design of func-
tional analogues by searching within large virtual compound libraries of iso-
functional structures, but based on a different scaffold. The third deals with
computer-driven combinations of two pharmacophores in the hope of designing
new active entities combining in one molecule the critical pharmacophoric ele-
ments of two partners. All these applications will be presented and discussed in
the following chapters of this book.

References 11

References

1 Wermuth, C.G., Ganellin, C.R., Lind-
berg, P., Mitscher, L. A., Glossary of
terms used in medicinal chemistry (IU-
PAC Recommendations 1997). Annu.
Rep. Med. Chem. 1998, 33, 385–395.

2 Evans, B. E., Rittle, K.E., Bock, M.G., Di-
Pardo, R. M., Freidinger, R.M., Whitter,
W. L., Lundell, G.F., Veber, D. F., Ander-
son, P. S., Chang, R.S., Lotti, V. J., Cerno,
D. J., Chen, T.B., Kling, P. J., Kunkel, K.
A., Springer, J. P., Hirshfield, J., Methods

for drug discovery: development of po-
tent, selective, orally effective cholecysto-
kinin antagonists. J. Med. Chem. 1988,
31, 2235–2246.

3 Trainor, G., Privileged structures – an
update. Annu.Rep. Med. Chem. 2000, 35,
289–298.

4 Sheridan, R. P., Miller, M.D., A method
for visualizing recurrent topological sub-
structures in sets of active molecules. J.
Chem. Inf. Comput. Sci. 1998, 38, 915–924.



1 Pharmacophores: Historical Perspective and Viewpoint from a Medicinal Chemist12

5 Thompson, L.A., Ellman, J.A., Synthesis
and applications of small molecule li-
braries. Chem. Rev. 1966, 96, 555–600.

6 Wermuth, C.G., Search for new lead
compounds: the example of the chemical
and pharmacological dissection of ami-
nopyridazines. J. Heterocycl. Chem., 1998,
35, 1091–1100.

7 Hajduk, P. J., Bures, M., Praestgaard, J.,
Fesik, S.W., Privileged molecules for
protein binding identified from NMR-
based screening. J. Med. Chem. 2000, 43,
3443–3447.

8 Parascandola, J., To bond or not to bond.
Bull. Hist. Chem. 2003, 28.

9 Earles, M.P., Early theories of the mode
of action of drugs and poisons. Ann. Sci.
1961 (publ. 1963), 17, 97–110.

10 Boyle, R., Of the Reconcileableness of Specific
Medicines to the Corpuscular Philosophy.
Samuel Smith, London, 1685, pp. 72–75.

11 Fränkel, S., Die Arzneimittel-Synthese auf
Grundlage der Beziehungen zwischen che-
mischem Aufbau und Wirkung. Julius
Springer, Berlin, 1901, pp. 13–41.

12 Cushny, A.R., The pharmacologic action
of drugs: is it determined by chemical
structure or by physical characters? J.
Am. Med. Assoc. 1903, 41, 1252–1253.

13 Langley, J. N., On the physiology of the
salivary secretion. Part II. On the mutual
antagonism of atropin and pilocarpin,
having especial reference to their rela-
tions in the sub-maxillary gland of the
cat. J. Physiol. 1878, 1, 339–369.

14 Langley, J. N., On the reaction of cells
and nerve-endings to certain poisons,
chiefly as regards the reaction of striated
muscle to nicotine and to curari. J. Phys-
iol. 1905, 33, 374–413.

15 Ehrlich, P., Morgenroth, J., Über Hae-
molysine. Dritte Mitteilung. Berl. Klin.
Wochnschr. 1900, 37, 453–457.

16 Maehle, A. H., Prull, C.R., Halliwell,
R. F., The emergence of the drug recep-
tor theory. Nat. Rev. Drug Discov. 2002, 1,
637–641.

17 Albert, A., Selective Toxicity. The Physico-
chemical Basis of Therapy. Chapman and
Hall, London, 1979, p. 23

18 Fischer, E., Einfluss der Konfiguration
auf die Wirkung der Enzyme. Ber. Dtsch.
Chem. Ges. 1894, 27, 2985–2993.

19 Woods, D.D., The relation of p-amino-
benzoic acid to the mechanism of the ac-
tion of sulphonamide. Br. J. Exp. Pathol.
1940, 21, 74–90.

20 Woods, D.D., Fildes, P., The anti-sulpha-
nilamide activity (in vitro) of p-aminoben-
zoic acid and related compounds. Chem.
Ind. 1940, 59, 133–134.

21 Dodds, E.C., Lawson, W., Molecular
structure in relation to oestrogenic activ-
ity. Compounds without phenanthrene
nucleus. Proc. R. Soc. London, Ser. B
1938, 125, 122–132.

22 Schueler, F. W., Sex hormonal action and
chemical constitution. Science 1946, 103,
221–223.

23 Easson, L.H., Stedman, E., Studies on
the relationship between chemical con-
stitution and physiological action. V. Mo-
lecular dissymmetry and physiological
activity. Biochem. J. 1933, 27, 1257–1266.

24 Beckett, A. H., Stereochemical factors in
biological activity. In Fortschritte der Arz-
neimittel Forschung, Birkhäuser Verlag,
Basel, 1959, pp. 455–530.

25 Farmer, P.S., Ariëns, E. J., Speculations
on the design of nonpeptide peptidomi-
metics. Trends Pharmacol. Sci. 1982, 3,
362–365.

26 Anden, N.E., Corrodi, H., Fuxe, K.,
Hoekfelt, B., Hoekfelt, T., Rydin, C.,
Svensson, T., Evidence for a central nor-
adrenaline receptor stimulation by cloni-
dine. Life Sci. 1970, 9, 513–523.

27 Barlow, R. B., Introduction to Chemical
Pharmacology, 2nd edn. Methuen, Lon-
don, 1964.

28 Belleau, B., An analysis of drug-receptor
interactions. In Modern Concepts in the
Relationship Between Structure and Phar-
macological Activity, Brunings, K. J. (ed.).
Pergamon Press, Oxford, 1963, pp. 75–99.

29 Pullmann, B., Coubeils, J. L., Courrière,
P., Gervois, J. P., Quantum mechanical
study of the conformational properties of
phenethylamines of biochemical and
medicinal interest. J. Med. Chem. 1972,
15, 17–23.

30 Wermuth, C. G., Schwartz, J., Leclerc, G.,
Garnier, J. P., Rouot, B., Conformation de
la clonidine et hypothèses sur son inter-
action avec un récepteur alpha-adrénergi-
que. Chim. Thér. 1973, 1, 115–116.



References 13

31 Marshall, G. R., Binding-site modeling of
unknown receptors. In 3D QSAR in
Drug Design, Theory Methods and Applica-
tions, Kubinyi, H. (ed.). ESCOM, Leiden,
1993, pp. 80–116.

32 Wermuth, C.G., Langer, T., Pharmaco-
phore identification. In 3D QSAR in
Drug Design. Theory Methods and Applica-
tions, Kubinyi, H. (ed.). ESCOM, Leiden,
1993, pp. 117–136.

33 Wermuth, C.G., The impact of QSAR
and CADD methods in drug design. In
Rational Approaches to Drug Design,
Hoeltje, H.D., Sippl, W. (eds.). Prous
Science, Barcelona, 2001, pp. 3–20.

34 Schneider, G., Giller, T., Neidhart, W.,
Schmid, G., “Scaffold-hopping” by topo-
logical pharmacophore search: a contri-
bution to virtual screening. Angew. Chem.
Int. Ed. 1999, 38, 2894–2896.

35 Rognan, D., Boulanger, T., Hoffmann, R.,
Vercauteren, D.P., André, J. M., Durant,
F., Wermuth, C.G., Structure and molec-

ular modeling of GABAA antagonists. J.
Med. Chem. 1992, 35, 1969–1977.

36 Ariëns, E. J., Rodrigues de Miranda, J. F.,
Simonis, A.M., The pharmacon-recep-
tor–effector concept: a basis for under-
standing the transmission of informa-
tion in biological systems. In The Recep-
tors, O’Brien, R. D. (ed.). Plenum Press,
New York, 1979, pp. 33–91.

37 Wermuth, C.G., Aminopyridazines–an
alternative route to potent muscarinic
agonists with no cholinergic syndrome.
Farmaco 1993, 48, 253–274.

38 Rognan, D., Sokoloff, P., Mann, A., Mar-
tres, M.P., Schwartz, J. C., Costentin, J.,
Wermuth, C.G., Optically active benza-
mides as predictive tools for mapping the
dopamine D2 receptor. Eur. J. Pharmacol.
Mol. Pharmacol. Sect. 1990, 3, 59–70.

39 Morphy, R., Kay, C., Rankovic, Z., From
magic bullets to designed multiple
ligands. Drug Discov. Today 2004, 9, 641–
651.



Part II
Pharmacophore Approaches

Pharmacophores and Pharmacophore Searches. Edited by T. Langer and R. D. Hoffmann
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-31250-1



Konstantin Poptodorov, Tien Luu, and Rémy D. Hoffmann

2.1
Introduction

Although the concept of pharmacophores constituting a simple representation
of molecules and chemical groups in certain order was introduced nearly a cen-
tury ago [1], there has been increasing interest and focus on pharmacophores in
recent years following the advances in computational chemistry research. The
historical development of the pharmacophore concept has recently been re-
viewed [2].

Often, all alignment-based methods and molecular field and potential calcula-
tions are classified as pharmacophore perception techniques. We will include
most of these methods in this review; however, when using the term pharmaco-
phore model, we will be referring mainly to one specific type of perception,
namely three-dimensional feature-based pharmacophore models represented by
geometry or location constraints, qualitative or quantitative. An extrapolation of
the pharmacophore approach to a set of multi-dimensional descriptors (pharma-
cophore fingerprints) has been developed mostly for library design and focusing
purposes [3–8].

At the beginning of this chapter we will look into the different automated
alignment methods as correct alignment is the first and most important prere-
quisite for a successful pharmacophore identification process. Further, we will
elaborate how essential issues of pharmacophore modeling such as conforma-
tional search, pharmacophore feature definitions, compounds structure storage
and screening are handled by various available software packages.

Various ways of perceiving pharmacophores have been explored, known is-
sues with pharmacophore modeling have been addressed in one way or another
and several computer-based applications with a pharmacophore focus have been
created since the 1980s. Many of these programs are not intensively used today,
but we consider that they should be mentioned in this review: ALADDIN [9],
DANTE [10–13], APOLLO [14], RAPID [15], SCREEN and its PMapper from
ChemAxon [16] and ChemX fingerprints [3] from Chemical Design (now Ac-
celrys).
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This review is based on literature data and on the personal experience of the
authors and should not represent a direct comparison between packages but
rather a snapshot of the current developments in pharmacophore perception
technology from our perspective.

2.2
Molecular Alignments

Although the terms molecular alignment and superposition and pharmacophore
elucidation are often used interchangeably, it is probably more accurate to differ-
entiate alignment as providing a prerequisite to pharmacophore development.
Conversely, some alignment methods require a pharmacophore as a starting
point [17–19]. In this section, we briefly overview the molecular alignment
methods available; extensive reviews and summaries of different superposition
algorithms over the last 10 years are available elsewhere [20–22]. Of course, mo-
lecular alignment is not limited to just providing a basis for pharmacophore
elucidation; it can also be used to derive 3D-QSAR models that potentially can
estimate binding affinities, in addition to indirectly providing insight into the
spatial and chemical nature of the receptor–ligand interaction of the putative re-
ceptor. Essentially, an alignment endeavors to produce a set of plausible relative
superpositions of different ligands, hopefully approximating their putative bind-
ing geometry.

Many of the issues and concerns in the generation of pharmacophore models
are inherent in different alignment methods. These issues can be used to differ-
entiate or categorize the plethora of available algorithms.

2.2.1
Handling Flexibility

Primary among these issues is that of ligand flexibility, vital in the determina-
tion of the relevant binding conformation for each of the ligands concerned.
Alignment methods can be considered rigid, semi-flexible or flexible. Rigid
methods, while generally simpler and faster, require a presumption of the bioac-
tive conformation of the ligands; this is often not possible and also removes the
impartiality of the method. Semi-flexible methods are those that are fed with
pre-generated conformers which are processed in either a sequentially, iterative
or combinatorial manner. These methods lead to a further series of considera-
tions such as whether the weighting, number and spread of conformers are de-
termined by energy cut-offs or Boltzmann probability distributions and whether
solvation models should be used. Flexible methods are considered to be those
in which the conformational analysis is performed on-the-fly and these are gen-
erally the most time consuming as they require rigorous optimization.
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2.2.2
Alignment Techniques

The fundamental nature of alignment methods can be broadly described as
being either point or property based. In point-based algorithms, pairs of atoms
or pharmacophores are usually superposed using a least-squares fitting. These
algorithms often use clique detection methods [23, 24], which are based on the
graph-theoretical approach to molecular structure, where a clique is a maximum
completely connected subgraph, to identify all possible combinations of atoms
or functional groups to identify common substructures for the alignment. The
greatest limitation of these algorithms is the need for predefined anchor points,
as the generation of these points can become problematic in the case of dissimi-
lar ligands.

Property-based algorithms, often also termed field-based, make use of grid or
field descriptors, the most popular of which are those obtained from the pro-
gram GRID, developed by Goodford [25]. These are generated by defining a
three-dimensional grid around a ligand and calculating the energy of interaction
between the ligand and a given probe at each grid point. These diverse descrip-
tors include various molecular properties such as molecular shape and volume,
electron density, charge distribution such as molecular electrostatic potentials
and even high-level quantum mechanical calculations.

These algorithms are commonly broken down into three stages, which are
subject to much variation. First, each ligand is represented by a set of spheres
or Gaussian functions displaying the property or properties of interest. Usually
the property is first calculated on a grid and subsequently transformed to the
sphere or Gaussian representation. A number of random or systematically
sampled starting configurations are then generated depending on the degrees
of freedom considered, rotational, translational and conformational. Finally, lo-
cal optimizations are performed with some variant of the classical similarity
measure of the intermolecular overlap of the Gaussians as the objective func-
tion. While earlier property-based alignment methods were commonly grid-
based, these have been surpassed by Gaussian molecular representation and
Gaussian overlap optimization. These provide high information contents and
avoid the dependence on additional parameters such as grid spacing while also
providing a substantial increase in speed.

Variations on these algorithms have included the application of Fourier space
methods to optimize the electron density overlap, similar to the molecular re-
placement technique in X-ray crystallography [26] and differentially weighted
molecular interaction potentials or field terms [27, 28]. Another interesting alter-
native has been to apportion the conformational space of the ligands into frag-
ments, compute the property field on pairs of fragments and determine the
alignment by a pose clustering and incremental build-up procedure of retrieved
fragment pairs [29].
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2.2.3
Scoring and Optimization

All alignment methods require some quantitative measure or fitness function,
to assess the degree of overlap between the ligands being aligned and to moni-
tor the progression of that optimization. This is most often manifested as a mo-
lecular similarity score or alignment index [22].

Typically in point-based algorithms, the optimization process endeavors to re-
duce the root-mean-square (RMS) deviation of the distances between the points
or cliques by least-squares fitting. However, interesting variations have been de-
veloped including the use of distance matrices to represent any given conforma-
tion of a ligand [30]. Simulated annealing is used to optimize the fitness func-
tion, which is a quantification of the sum of the elements of the difference dis-
tance matrix created by calculating the magnitude of the difference for all corre-
sponding elements of two matrices.

Another optimization method, related to the least-squares fitting used in
point-based algorithms, is the directed tweak method [31]. This is a torsional
space optimizer, in which the rotatable bonds of the ligands are adjusted at
search time to produce a conformation which matches the 3D query as closely
as possible. As directed tweak involves the use of analytical derivatives, it is very
fast and allows for an RMS fit to consider ligand flexibility.

In property-based alignments where the molecular fields are represented by
sets of Gaussian functions, the intermolecular overlap of the Gaussians is used
as the fitness function or similarity index. The two most common optimization
methods are Monte Carlo and simulated annealing [32, 33]. Other straightfor-
ward optimization algorithms include gradient-based methods and the simplex
method, which seeks the vector of parameters corresponding to the global ex-
treme (maximum or minimum) of any n-dimensional function, searching
through the parameter space [34].

Further, more sophisticated, optimization algorithms include neural networks
and genetic algorithms which mimic the process of evolution as they attempt to
identify a global optimization [35]. In an alignment procedure chromosomes
may encode the conformation of each ligand in addition to intramolecular fea-
ture correspondences, orientational degrees of freedom, torsional degrees of
freedom or other information such as molecular electrostatic potential fields.
During the optimization the chromosome undergo manipulation by genetic op-
erators such as crossover and mutation.

Alignment methods are also known to combine different optimization meth-
ods, such as a genetic algorithm and a directed tweak method [36].

Although this summary has highlighted the most common differentiators
that can be used to categorize the plethora of available algorithms, further is-
sues are significant to the alignment dilemma. Such issues include the degree
of human intervention required, how to address the relative significance or
weighting of some ligands over other ligands and how some algorithms gener-
ate multiple alignment solutions rather than an optimum superposition.
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2.3
Pharmacophore Modeling

A general workflow for the generation of pharmacophores from multiple li-
gands is outlined in Fig. 2.1. The field-based methods, although important and
worth mentioning in this chapter, will be treated here separately from the “clas-
sical” pharmacophore modeling as defined above.

2.3.1
Compound Structures and Conformations

The generation of the correct compound structures is a critical step in which
different components such as atomic valences, correct bond orders and properly
defined aromaticity have to be considered carefully. In addition, the correct
stereochemistry flags need to be added for a correct treatment of stereochemis-
try. Most of the current pharmacophore generation packages include compound
builders, but users can also import them from external sources using common
file formats, for example SMILES, MOL, SD or MOL2.
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2.3.2
Representation of Interactions in the Pharmacophore Models

The representation of pharmacophores varies from one package to another and
includes the nature of the pharmacophore points (fragments, chemical features)
and the geometric constraints connecting these points (distances, torsions,
three-dimensional coordinate location constraints).

The interpretation of the chemical structures of the molecules (Fig. 2.1, Fea-
ture Analysis) can be done at two levels:
1. Substructural, where molecules can be decomposed into different fragments,

each fragment carrying certain specifications (e.g. basic nitrogen or aromatic
ring).

2. Functional, where an abstraction of the structure is made such that each mo-
lecular fragment of the compounds is expressed by the general property it car-
ries. In the current stage, the properties mapped on the fragments are chemi-
cal properties, e.g. hydrophobic or ionic interactions or hydrogen bonding fea-
tures. The characterization of the chemical properties of compounds requires
these functions to be accessible for the interaction with the binding partner
(receptor, enzyme or nucleic acid), so in case the bioactive conformation of
the ligand is not known, a conformational expansion analysis is a necessary
step in order to identify a conformation which makes those functions avail-
able for interaction with the macromolecular target.

2.3.3
Conformational Expansion

This is probably the most critical step, since the goal here is not only to have
the most representative coverage of the conformational space of a molecule, but
also to have either the bioactive conformation as part of the set of generated
conformations or at least a cluster of conformations that are close enough to
this the bioactive conformation. Here we divide the methods that can be used
for this purpose roughly into four categories: systematic search in the torsional
space, optionally followed by clustering, stochastic methods, e.g. Monte Carlo,
sampling, e.g. Poling [37], and molecular dynamics. The resulting set of confor-
mations can be further optimized using minimization with or without solvent.

There are numerous references in the literature, e.g. [17], showing the effects
of various sets of conformational models on pharmacophore generation; how-
ever, the goal of this chapter is not to describe and analyze the different ap-
proaches.

Marshall et al. described the so-called Active Analog Approach [38], in which
the conformational space of flexible molecules is constrained to the geometry of
a reference molecule (generally active and as rigid as possible). Pharmacophore
models are then derived from the set of resulting alignments. This approach
has been successfully used since the mid-1980s and still forms the basis of
many existing automated pharmacophore modeling techniques.
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2.3.4
Comparison

This step constitutes the pharmacophore generation itself and represents the
major focus of this chapter. The majority of pharmacophore generation
packages generate qualitative pharmacophores that do not consider the activity
of the molecules (potency), so in general equipotent molecules have to be used.
Most of these methods are based on minimizing the RMS superposition error
between conformations of various compounds while trying to increase the
three-dimensional overlay of pharmacophores. The result is generally multiple
pharmacophore solutions, ranked according to different metrics depending on
the package used. To our knowledge, currently only two packages are capable of
generating SAR models on-the-fly by using directly activity values (Ki or IC50):
Catalyst® HypoGen [39, 40] and Apex3D [41].

2.3.5
Pharmacophores, Validation and Usage

After performing pharmacophore analysis on a set of compounds, typically the
user will have to select the model(s) with biological and/or statistical relevance,
often from multiple possible solutions and use for further research purposes.
The validation of the pharmacophore models is therefore a critical aspect of the
pharmacophore generation process. A review of the validation methods applica-
ble to the field of pharmacophore generation is described elsewhere in this book
[42].

In a nutshell, these validation methods can be ordered into three categories:
1. Statistical significance analysis, randomization tests.
2. Enrichment based methods. These focus on recovering active molecules from

a test database in which a small number of known actives have been hidden
in a large database of randomly selected compounds. Database mining and
the utilization of receiver operating characteristic (ROC) curves [43] can be in-
cluded in this category.

3. Biological testing of a selection of compounds.

The main utility of pharmacophores is their use as screening tools. Many exam-
ples in the literature show their successful usage in finding new scaffolds [44–
51].

2.4
Automated Pharmacophore Generation Methods

In order to have an objective view of the different available pharmacophore per-
ception software tools, we chose to analyze these using the following criteria
whenever possible:
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1. Compound builder: is there a molecular builder? Which file formats are sup-
ported?

2. Stereochemistry: how is the stereochemistry of molecules handled in the pro-
gram?

3. 3D conformations: does the program contain conformer generation methods?
4. Pharmacophore generation engine: which type of pharmacophore perception

engine is implemented in the program?
5. Fitness function: how are the pharmacophores evaluated?
6. Alignment method: does the program require pre-alignment of molecules?

On what basis are the molecules aligned together?
7. Pharmacophore definition: description of the type of pharmacophore locations

and associated functions. Can other descriptors be added to the pharmaco-
phore alignment?

8. Database searching: is a database search engine implemented in the pro-
gram? Which types of database searches are possible, e.g. substructure, phar-
macophore, shape, exclusion?

9. Scoring of hits: Can database search hits be ranked?

The currently available pharmacophore perception methods are reviewed here
in three major categories: geometry- and feature-based methods, field-based
methods and pharmacophore fingerprints. Finally, the methods that do not fall
into any of the above categories are described in an additional section.

2.4.1
Methods Using Pharmacophore Features and Geometric Constraints

2.4.1.1 DISCO, GASP and GALAHAD
The above programs are all currently implemented and marketed by Tripos and
were developed by either the pharmaceutical industry or academic institutions
and in cooperation with Tripos. All are integrated into the Sybyl® environment
[52] and use it for visualization and molecule construction.

DISCO (DISCOtech)
Even though the original authors of DISCO do not consider it to be an auto-
mated pharmacophore identification program [53], we decided to include the
method in this review because of its considerable influence over the develop-
ment of modern pharmacophore modeling tools.

By design, no conformational engine was implemented in DISCO, based on
the assumption that at the time, no universal force fields and methods suitable
for all types of compounds were available [53]. However, the commercial distri-
butor Tripos provides access to 3D converters and conformational search en-
gines such as Concord® and Confort® via the Sybyl interface. These algorithms
will not be reviewed here as strictly seen they are not part of any pharmaco-
phore identification program. The distance geometry approach has been used
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successfully for subsequent pharmacophore modeling with DISSCO by the
authors of DISCO and other researchers [53, 54].

DISCO considers three-dimensional conformations of compounds not as coor-
dinates but as sets of interpoint distances, an approach similar to a distance ge-
ometry conformational search. Points are calculated between the coordinates of
heavy atoms labeled with interaction functions such as HBD, HBA or hydro-
phobes. One atom can carry more than one label. The atom types are consider-
ed as far as they determine which interaction type the respective atom would be
engaged in. The points of the hypothetical locations of the interaction counter-
parts in the receptor macromolecule also participate in the distance matrix.
These are calculated from the idealized projections of the lone pairs of partici-
pating heavy atoms or H-bond forming hydrogens. The hydrophobic points are
handled in a way that the hydrophobic matches are limited to, e.g., only one
atom in a hydrophobic chain and there is a differentiation between aliphatic
and aromatic hydrophobes. A minimum constraint on pharmacophore point of
a certain type can be set, e.g. if a certain feature is known to be required for ac-
tivity [53, 54].

DISCO relies on the Bron–Kerbosch clique detection algorithm for interdis-
tance comparison. In DISCO, multiple conformations per compound are con-
sidered in the alignment and the stereochemistry is preserved. However, there
is no mechanism for selecting conformations within the algorithm apart from
the alignment to other structures, hence the user has to provide a conforma-
tional model that contains only the desired (low-energy) conformations. As a di-
rect consequence, conformationally restrained compounds should be the pre-
ferred input for the program, provided that they carry the same activity as the
more flexible analogues and the performance of the program tends to decrease
with increasing flexibility of the input compounds [53].

During a DISCO run, one compound is taken as reference and each confor-
mation of the remaining compounds is aligned on to the reference conforma-
tion in order to find a pharmacophore match. Typically, the least flexible com-
pound serves as a reference as this reduces the pharmacophore space to explore
and the number of results left to evaluate. The result is scored multiple phar-
macophore solutions rather than a single model. The score is based on the
number of participating molecules, number of features and the interfeature dis-
tances. Higher model quality is achieved by automatically reiterating through a
number of variables such as distance tolerance specified as minimum, maxi-
mum and increment, number of features and compounds used in the analysis
[53, 55]. The resulting pharmacophores are required to match all features in all
compounds.

The pharmacophore points in the Tripos implementation of DISCO, currently
marketed under the name DISCOtechTM, can be represented as Tripos UNI-
TY® [56] query features and the models can be used directly for UNITY data-
base searches or in combination with 3D QSAR such as CoMFA as described
in [57].
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GASP
GASP stands for Genetic Algorithm Superposition Program and, as suggested
by its name, it uses a genetic algorithm for pharmacophore identification.
GASP was developed by Jones, Willet and Glenn in the mid-1990s [35]. The
methods used in GASP are similar to those in the leading docking application
GOLD, developed by the University of Sheffield, GlaxoSmithKline and CCDC
[58, 59].

Unlike other pharmacophore identification routines, the conformational
search is performed on-the-fly in GASP and represents an integral part of the
program. Each compound is input a single, low-energy conformation and ran-
dom rotations and translations are applied in order to explore the conforma-
tional variation prior to superposition.

The first step in the pharmacophore generation process with GASP is the de-
termination of the pharmacophore features: rings, donors (protons) and accep-
tors (lone pairs). The atoms defined as HBA carriers can be aliphatic and aro-
matic nitrogens, alcohols, ethers, carbonyl, carboxyl oxygens and halogens;
HBD carriers include amines and hydroxyls [60]. Projection points for the hy-
drogen bonding features are considered during pharmacophore analysis. GASP
considers only aromatic structures as hydrophobic and there is no option to
modify any of the pharmacophore feature definitions or introduce new ones
[54]. If a training set consists of N compounds, a chromosome will consist of
2N – 1 strings: N binary encoding the conformational information about each
compound and N – 1 integer strings representing the feature mappings of the
training set members to a single reference (base) molecule. The length of each
integer string equals the number of features in the respective molecule. The
compound with the least pharmacophore features is selected as base molecule
[60]. No more than one molecule can be used for that purpose. Essentially, the
program tries to maximize the mappings using a least-squares method while
trying to satisfy a fitness function comprising three components: the similarity
score of the mapped features, the volume integral of the aligned structures and
the internal steric energy of the participating conformers, where the weighting
of each contribution can be adjusted by the user.

GASP uses two genetic operators, crossover (two parents produce two chil-
dren) and mutation (one parent produces one child) to evolve models with a
maximum fitness score and therefore the highest quality structural alignment.
The similarity score for the overlaid molecules is the sum of the scores of the
similarity match between donors, acceptors and aromatic rings. The volume in-
tegral is determined as the mean volume integral per molecule with the base
molecule. Finally, the internal van der Waals energy is calculated as Lennard–
Jones 6–12 potential and represented as the difference from the preceding con-
former. [60]. All features of all molecules must match in the alignment, hence
no outliers are allowed and sometimes subsetting may be required during the
training set preparation phase in order to separate out compounds that carry
somewhat different pharmacophoric information [54]. Owing to the nature of
the algorithm, each run may result in a slightly different solution. Several solu-
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tions can then be collected, ranked according to fitness score and analyzed vi-
sually in order to find the most suitable answer [54].

Similarly to DISCO, the alignments coming from GASP can be used as a
starting point for CoMFA studies [61].

GALAHAD
GALAHAD [62] is a joint development between Tripos, the University of
Sheffield, Novo Nordisk and Biovitrum. At the time of writing this review, there
was little public information available about this new program; however, the
underlying methods have been described earlier [63, 64]. The program uses a
modified GA and seems to address the limitations of GASP in terms of increas-
ing performance, reducing bias towards a single template (base) molecule, intro-
ducing partial matching and an improved multi-objective Pareto scoring func-
tion.

GALAHAD allows the use of pre-generated conformations as a starting point,
which increases the speed of the calculation. Each molecule is represented as a
core and set of torsions. In the alignment phase, a new method is used, where
each molecule is compared with each other, hence no template is required.
Pharmacophore similarity rather than feature mappings is used for the compar-
ison, which should result in shorter run times. The fact that not all features are
required to map contributes to the ability of the models to accommodate more
diverse structures. Unlike GASP, GALAHAD reports multiple solutions from a
single run which are ranked according to their scores and can be resubmitted
for refinement if desired [65].

All of the programs discussed in this section can be used a database search
queries using the Tripos database mining utility UNITY. UNITY allows 3D
searching using queries not only from pharmacophores but also using surface
and excluded volumes, queries derived from receptor binding sites and 2D sub-
structure and similarity searching. The 3D flexible searching is based on the Di-
rected Tweak method [66]. Conformational flexibility during searching with
UNITY is handled on-the-fly. UNITY provides an interface to Oracle® and
thereby relational database querying features [56].

2.4.1.2 Catalyst
Catalyst® [67] was launched 1992 by BioCAD (now Accelrys) as a tool for auto-
mated pharmacophore pattern recognition in a collection of compounds based
on chemical features correlated with three-dimensional structure and biological
activity data.

Catalyst models (hypotheses) consist of sets of abstract chemical features ar-
ranged at certain positions in the three-dimensional space. The feature defini-
tions are designed to cover different types of interactions between ligand and
target, e.g. hydrophobic, H-bond donor, H-bond acceptor, positive ionizable, neg-
ative ionizable. Except in some special cases, different chemical groups that lead
to the same type of interaction, and thus to the same type of biological effect,
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are handled as equivalent. The directions of the H-bonds are usually determined
and are given by vectors. Distinct chemical features in a particular conformation
of a compound must be located within the tolerance constraints in order to sa-
tisfy the model. These models can be used directly as three-dimensional data-
base search queries in the Catalyst environment.

The pharmacophore identification process as implemented in the Catalyst
package involves 3D structure generation, followed by conformational search
and definition of the pharmacophore points consistent with the training set.

Molecular structure editor
For the construction of molecular structures, a 2D formula editor is provided in
combination with 3D conversion. Standard potential energy minimization is
performed using the modified parameter set of the CHARMm force field [68];
the conformational models are built using Monte Carlo conformational analysis
together with poling as described in the next section.

Conformational analysis in Catalyst

(i) Overview
While many common methods attempt to identify one global minimum energy
conformation and other local minima as representative of the space, the
approach to conformational analysis taken within Catalyst claims a broad cover-
age of bioaccessible conformational space of the molecules within a user-speci-
fied energy threshold. This implies that the representative conformers generated
by Catalyst are not necessarily at local minima on the potential surface but are
distributed widely over the space. This approach to conformational analysis is
emerging from the consideration that, in many cases, the bound conformation
of a small molecule to a receptor may not be the lowest energy conformation.
Furthermore, the global minimum predicted by a force field could be incorrect
owing to solvation effects or approximation errors in the force field.

A common difficulty accompanying the representation of the conformational
space by sampling is the redundancy among conformers. Usually many hun-
dreds or thousands of conformers are generated and then reprocessed to pick
out families representative of the whole space. After a local minimization, many
of these conformers may fall into the same conformation, reproduced several
times. Therefore, Catalyst focuses on the coverage of all possible bioactive con-
formations of a compound compared with methods that represent conforma-
tional space as a collection (clusters) of local minima.

Another issue that should be addressed briefly is the relationship between
size and resolution of a conformational model particularly in terms of coverage
of the low-energy regions of the accessible conformational space. The coverage
should at any rate be consistent with the precision of the application which uses
the conformational model. During three-dimensional pharmacophore genera-
tion for database search purposes, the restriction is given by the tolerance of the
pharmacophore query. It has been shown in principle that a limited number of
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conformers is sufficient to represent the low-energy conformational space of
small- to medium-sized molecules [69, 70].

Catalyst addresses conformational flexibility by storing compounds as multi-
ple conformers per molecule. Given that one has to generate and search
through a very large number of conformers that may be in fact similar enough
to can be treated as identical when mapped on to a pharmacophore hypothesis,
the need for variation with a simultaneous reduction in the number of confor-
mers becomes evident. The Poling algorithm of Smellie et al. [37] implemented
in Catalyst is intended to solve many of these problems.

(ii) Conformational search in Catalyst: catConf/ConFirm
Two types of conformational search, BEST and FAST, are employed in Catalyst.
Both methods emphasize adequate coverage of the conformational space, each
with specific advantages. The FAST method delivers a reasonable model within
a short time and is utilized primarily for database generation purposes, whereas
the BEST method is intended to build more precise conformational models of
molecules for hypothesis generation. Both methods use Poling by default, BEST
for all molecules and FAST depending on the size and flexibility of the com-
pounds in question. For smaller, less flexible compounds, the FAST method
uses systematic search in the torsional space instead of Poling. Poling and var-
ious aspects of conformational search parameters are user adjustable and can
be turned off if required. Stereochemistry is handled in an exhaustive manner
with the options to specify explicit, relative and unknown chirality. Specified ex-
plicit and relative chirality will always be preserved during conformational
search and pharmacophore analysis, whereas for compounds with chirality
marked as unknown, mirror images will be considered unless this is not de-
sired by the user.

Conformational models generated by other programs can be used for pharma-
cophore generation and in Catalyst databases by importing multiconformer
structures stored, e.g., in SD file format.

Pharmacophore modeling with Catalyst
Catalyst provides two algorithms for automated pharmacophore arrangement
search. HypoGen uses biological assay data (e.g. IC50 or Ki) to derive hypotheses
that can predict quantitatively the activity of compounds, whereas HipHop seeks
a common three-dimensional configuration of chemical features shared among
a set of active molecules. In the case of HypoGen, similarly to 3D QSAR, all
members of the training set must possess the same binding mode; the second
method optionally allows automatic elimination of compounds that may have a
different molecular site of action. The resulting models undergo a complex eval-
uation process by the program and the top scoring results are reported to the
user.

(i) HipHop
The HipHop algorithm [71] attempts to produce an alignment of compounds
expressing certain activity against a particular target and by superposition of di-
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verse conformations to find common three-dimensional arrangements of fea-
tures shared between them. Even though HipHop does not use activity data as
input, it is a good idea to select highly active chemically diverse compounds
when composing training sets whenever possible.

HipHop identifies common features by a pruned exhaustive search, starting
with the simplest possible (two-feature) arrangements and expanding the model
to three, four, five features and so on until no more common configurations
can be found. This includes a search through two large spaces – the conforma-
tional space of the training set and the pharmacophore domain. HipHop does
not need a particular reference conformation. If required, HipHop will attempt
consecutively to align with each other all conformers of every training set mem-
ber. Still, at least one molecule as the entire conformational model (principal
compound) must be specified as a reference. Which exact conformer will then
be present in the alignment depends on the remaining compounds and their
conformational diversity and also on the conditions of the run.

First, the program identifies matches and distribution of the chosen features
among the training set members, followed by the alignment procedure. The fea-
tures are considered superimposed when of each of them lies within a specified
distance (tolerance) from the ideal location, and at the same time the RMS de-
viation for the configuration as a whole is measured. The quantitative estima-
tion of the goodness of match between a molecule and a configuration of fea-
tures (Fit) can be pursued similarly to a scoring function to rank virtual screen-
ing results.

In the ideal case, superposition of all input molecules is desired. Sometimes
it could be of advantage to permit some molecules, up to a specified number, to
miss one, one particular or more than one of the features of a configuration in
order to map all the remaining features. The benefit from such an option is
that it allows one to work with compounds that may have a different binding
mode or show activity in a particular assay as a result of an alternative mecha-
nism of action or experimental errors.

In most cases, the result of a HipHop run will be numerous configurations
of features so there is a need to score and rank them. For instance, the input
molecules may often share feature arrangements widespread among drug mole-
cules or there may be configurations common for the training set but rare in
general. The ranking of the HipHop models is therefore based on rarity [71].
Maximizing the score of a configuration will minimize the probability that the
training set molecules map the model by chance, making the pharmacophore
specific

(ii) HypoGen
The HypoGen algorithm is designed to correlate structure and activity data for
pharmacophore model generation.

HypoGen consists of three phases: constructive, subtractive and optimization.
Generally, the constructive phase is similar to the proceeding of the HipHop al-
gorithm. The training set is divided into two subsets, “active” and “inactive”
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compounds. First, all pharmacophores shared between the first two most active
compounds are identified by overlaying systematically all their conformations,
then only hypotheses that fit a minimum subset of features present in the re-
maining active compounds are kept.

In the subtractive phase, the program inspects the hypotheses already created
and removes those most common to the inactive part of the training set. Com-
pounds are considered inactive when their activity lies 3.5 logarithmic units
(this value is user adjustable) below that of the most active compound.

The subtractive phase is followed by an optimization phase where simulated
annealing is used to improve the predictive power of the hypotheses. Small
changes are made to the models and they are scored according to the accuracy
in activity estimation. Finally, the simplest models that correctly estimate activity
are selected (Occam’s Razor) and the top N solutions are reported to the user.
The method has been described in more detail elsewhere [39, 40].

An important assumption that is made within both HipHop and HypoGen is
that more contacts to the receptor and therefore more features per molecule
lead to enhanced activity. It is well known from practice that often this is not
true, e.g. large and feature-rich compounds may be barely active because of un-
favorable steric interactions. An extension to the HypoGen algorithm, HypoRe-
fine, is intended to help in solving this problem by placing the exclusion vol-
ume in key locations derived from atoms of well-fitting but inactive compounds.
On the other hand, when insufficient activity or only HTS data are present, the
HipHop Refine algorithm allows the use of “negative” information from inac-
tive compounds matching the pharmacophore in order to generate a grid-based
exclusion volume which eliminates false-positive vHTS hits and increases en-
richment rates [72, 73].

(iii) Compound databases and database searching in Catalyst
Essentially there are two approaches to address the problem of conformational
flexibility during pharmacophore screening: the use of multiple stored confor-
mations and on-the-fly conformer calculation [74]. Catalyst offers a combination
of both solutions within the Fast and Best Flexible Search algorithms. Catalyst
databases consist of compounds stored as multiple conformations. When ex-
ecuting Fast Flexible Search, the search is performed using only conformations
already existing in the database and Fast Search tries to find one fitting the
pharmacophore among those available. The algorithm used with Best Flexible
Search Databases/Spreadsheets can modify the conformation of a molecule dur-
ing the computation to enforce a fit within a given energy threshold.

The database search process starts with a rapid screening process within
which molecules possessing properties required from potential hits are sorted
out from those that can be excluded a priori. The screen involves substructure
match followed by screens matching three-dimensional pharmacophore fea-
tures, molecular shapes or exclusion volumes and text constraints (1D proper-
ties) if present in the query (through Oracle). All this greatly reduces the num-
ber of potential hit compounds in the database. The next step of the search pro-
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cess tries a rigid fit of each conformation of each compound to the correspond-
ing features. Compounds are selected as hits after the first successful mapping
of all features and once all compounds have passed the procedure a hit list is
obtained [40].

The Best database search first identifies all potentially suitable compounds by
using loosened constraints, thus including those that would fail a rigid search.
Within this preliminary list, the algorithm attempts to modify additionally the
conformers so that they can fit the original query while remaining below a cer-
tain energy overflow [40]. The use of a Best search is justified when one has to
deal with too small hit lists.

Once a hit list has been obtained, Catalyst provides the possibility to compute
fit values that can be used for scoring.

Here, we consider it appropriate to mention briefly the so-called shape-based
methods for flexible compound searching. Although these are not strictly seen
in any relationship with the functional pharmacophore perception, the shape
and size of compounds obviously influence activity and, in some cases, may be
the main factors determining biological action.

A typical example of such a ‘volume-searching’ application is the shape-based
methodology introduced by Hahn in 1997 [75]. Essentially, this approach in-
volves the computation of the van der Waals surface enclosing a single or multi-
ple structures and representation of the volume enclosed in this surface as a
grid with a default size of 1 Å. The enclosed volume together with the surface
represents the query. The searching procedure involves passing number of filter-
ing constraints in order to identify quickly the most suitable molecules, whereas
the actual match is done by comparing the Tanimoto similarity of the intersec-
tion divided by the sum of the volumes of the query and the target conforma-
tion of the candidate compound. The similarity score is computed after aligning
the query and the candidate structure by their principal axis [75]. Earlier studies
by the same authors describe Receptor Surface Models and their utility in
QSAR analysis [76, 77].

Examples of volume-based approaches by other commercial software distribu-
tors are FlexS from Tripos [78, 79] and ROCS from OpenEye [80, 81].

5.4.1.3 Phase
Phase is the pharmacophore generation module provided by Schrödinger [82].
Like other modules available from Schrödinger, Phase uses the Maestro inter-
face [83] as the visualization tool. Maestro provides a molecule sketcher and all
the common molecular file formats are supported.

The pharmacophore generation module in Phase generates pharmacophore
models using a four to five step procedure described below.

Ligand preparation
Molecule construction and 2D to 3D conversion are performed by using the Lig-
Prep application in the Maestro modeling environment [84, 85]. Ionization at a
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given pH or neutralization, tautomer enumeration and stereoisomer enumera-
tion are also supported. Stereoisomers can be treated either as being separate or
identical molecules.

The molecule preparation step includes also conformational expansion using
a torsional search or a combined Monte Carlo Multiple Minimum/Low Mode
search. During the search, the intramolecular hydrogen bonds are not consider-
ed. Molecules can be minimized, OPLS-2005 or MMFF force fields [86, 87] are
available, and also two continuum solvation models (distance-dependent dielec-
tric or GB/SA). A double criterion is used to eliminate redundant conforma-
tions; it uses distances between pairs of corresponding atoms within a 1 kcal
mol–1 energy window.

Using all compounds chosen to participate in a pharmacophore analysis, a
molecular spreadsheet can be created and the user can manually select the mol-
ecules that will belong to the set that will define the reference pharmacophore
space (active set).

Creating the pharmacophoric sites
Similarly to other software packages such as DISCO and Catalyst, Phase uses
chemical features (hydrophobic, H-bond acceptors, H-bond donors, negative
charge, positive charge, aromatic ring) to define the pharmacophore points
called sites. These features are encoded in SMARTS and can be edited. H-bond-
ing features are vectorized features (their directionality is considered).

Finding common pharmacophores
Using the sites defined in the previous step, pharmacophores common either to
all or to a user-defined number of the selected active molecules will be gener-
ated, Phase uses a tree-based partitioning algorithm for that purpose, which
places pharmacophore configurations in multi-dimensional boxes and groups
them according to their inter-site distances The user has control over the size of
the pharmacophore models (maximum number of features), and also the inter-
pharmacophore point spacing. Pharmacophores containing between three and
seven sites can be generated.

A given pharmacophore can be edited (feature addition or removal) and the
excluded volume can be added in order to add some more information based
on inactive molecules.

Scoring the pharmacophores
All ligands will be aligned on the models. The model ranking is performed
using a user-weighted scoring function consisting of:
1. the quality of the alignment (RMSD in the site-point positions);
2. the definition of a vector score that measures the angle deviation (average co-

sine) between the vectorized features on the molecules;
3. the definition of a volume similarity (common/total) score based on the over-

lap of steric models of heavy atoms in each pair of molecules.
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Partial mapping of the molecules on a pharmacophore model is allowed. At this
stage, pharmacophore models and alignments can be visualized. Excluded vol-
umes can be added manually after having aligned the inactive molecules on the
pharmacophore models.

Building a QSAR model
The generation of a QSAR model is done as a post-processing step of pharma-
cophore generation. This is conceptually different from the Catalyst/HypoGen
approach, in which SAR data are used actually to build the pharmacophore
models, and this is reflected in these models. In the QSAR approach of Phase,
molecular structures are aligned on the pharmacophore, a rectangular grid that
encompasses the aligned molecules is created (generating uniformly sized
cubes) and partial least-squares (PLS) is used for the regression. As in CoMFA,
favorable and unfavorable regions can be visualized. Both atoms and pharmaco-
phores can be used for the models.

Phase also has its own database management system, with the possibility of
either storing single conformations for the molecules or storing different sets of
conformations.

As part of the processing within this system, molecules can be cleaned (chir-
ality, ionization). Conformers can also be generated on-the-fly when performing
the database search. In addition to conformations, indexing of a database can
be done by adding pharmacophore sites. Partial match of the hits on a pharma-
cophore query is allowed. The pharmacophore search hits are ranked using a
fitness function.

2.4.1.4 Pharmacophores in MOE
MOE (Molecular Operating Environment) [88] is the modeling platform devel-
oped by the Chemical Computing Group. This platform allows access to differ-
ent sets of computational tools ranging from bioinformatics, protein modeling,
structure-based design to pharmacophore perception. All these applications have
been integrated using the Scientific Vector Language (SVL) [89, 90].

The pharmacophore models built in MOE are qualitative. There is no possi-
bility of using the SAR of a set of molecules in the building of the models.

The workflow that is used in MOE can be divided into four main steps:
1. generate annotations for all ligand conformations;
2. create a pharmacophore query;
3. database search;
4. edit the pharmacophore query for refinement and search the database again.

Generate annotations
In the MOE environment, molecules are stored in a database with their asso-
ciated set of conformations. Several methods can be applied to expand the con-
formational space of organic molecules ranging from molecular dynamics to
stochastic methods and systematic search. A fragment-based high-throughput
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methodology is provided for the construction of conformation databases. For
each molecular conformation, an annotation can be generated using a so-called
Pharmacophore Pre-Processor. The goal is to encode all the possible structural
features (H-bond donors and acceptors including tautomers, anions and cations,
including resonance forms and hydrophobic and aromatic areas) that describe
the ligand’s pharmacophore. This tool recognizes the different conformations of
a molecule by molecular graph comparison. However, its use is optional and an-
notation can be performed during the database search (with the obvious conse-
quence of increased search times). Molecules can be then visualized using the
Database Viewer.

Create a pharmacophore query
The definition of pharmacophores is done manually by applying so-called
schemes using a Pharmacophore Query Editor. A template molecule is generally
used for this purpose. In the MOE environment, a scheme is a collection of
functions that define how each ligand is annotated. This is accessed via an SVL
function. The default scheme is called PCH (Polarity-Charged-Hydrophobicity).
New schemes can be created to represent certain molecules better, e.g. Planar-
Polar-Charged-Hydrophobicity [91].

If the structural information of a receptor is not available, molecule align-
ments can be performed using an all-atom flexible alignment procedure that
combines a force field and a 3D similarity function based on Gaussian descrip-
tions of shape and pharmacophore features to produce an ensemble of possible
alignments of a collection of small molecules [92]. Pharmacophore queries can
be derived from the resulting set of aligned conformations of known actives.

Currently, there is no automated tool in MOE that can generate pharmaco-
phore models from a set of active/inactive molecules. As a consequence, there
is no pharmacophore scoring or ranking or a validation method implemented
in the program.

Database search
The so-generated pharmacophore is then used for database mining. In MOE,
molecules are stored in databases with pre-calculated conformations. No new
conformations are generated during a database mining experiment. Compounds
are aligned with the query using a rigid-body superposition, with no flexible ad-
justment of the rotatable bonds. Full or partial mapping of the pharmacophore
features can be obtained, with user control of the pharmacophore matching
rules. Excluded volumes can be used to refine a query further.

Editing the pharmacophore query for refinement
The built-in query editor allows the user to refine a previously built pharmaco-
phore model further.
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2.4.2
Field-based Methods

As we have already mentioned in the Introduction to this chapter, we felt that
we needed to include the traditional and well-validated field-based methods in
this review. Our view is, however, that these methods do not fall directly into
the classical definition of pharmacophores, which we rather associate with fea-
ture-based alignments and geometric constraints. This perception certainly in-
volves a degree of oversimplification, yet it allows easier coverage of different
conformational states, which may otherwise result in completely different fields.
Furthermore, we do appreciate its relationship to the traditional understandings
in medicinal chemistry and hence its helpfulness in the discovery process. On
the other hand, the high complexity of 3D descriptors, the dependence on the
binding mode and the alignment associated with the field-based methods makes
these accurate but labor-intensive 3D QSAR methods less suitable in a virtual
screening process, but undoubtedly useful tools for compound optimization.

In this review, we focus mainly on the classical CoMFA® methodology, but
also mention other, more recent, developments.

2.4.2.1 CoMFA
Comparative Molecular Field Analysis (CoMFA) was introduced in 1988 and
has since established itself as a recognized industry standard 3D QSAR method.
It is patented and is commercially distributed by Tripos. As the name suggests,
CoMFA uses molecular fields to characterize 3D structure–activity relationships
within a set of molecules. The initial CoMFA studies involved two types of
fields: steric derived from the Lennard–Jones potentials and electrostatic from
the electrostatic potentials calculated against an ion probe. Later these were ex-
tended with several other types such as hydrogen bonding, indicator and para-
bolic fields, available within the Tripos Advanced CoMFA® module. More com-
plex probes are used in GRID by Goodford [25]. Comparative molecular Shape
analysis is similar to CoMFA but uses a Gaussian function for field assessment
[65, 93].

The first, most important step in the CoMFA analysis workflow is the estab-
lishment of a meaningful molecular alignment hypothesis. However, this does
not imply that the alignment should necessarily be very similar to the relative
orientation of the ligands in a receptor binding pocket. This may seem confus-
ing, but one has to be aware of the level of abstraction involved in this type of
modeling and the purpose of the alignment. In the case of the typical ligand-
based CoMFA method, the aim is not the close reproduction of binding modes,
but finding the structural regions of the compounds in question suitable for
modification in order to achieve an improved activity profile. In other words,
the information here is gained based on the 3D structural comparison between
ligands rather than a comparison between ligands and a receptor, hence a direct
relationship to a receptor binding pocket should not always be expected. Similar
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considerations also apply to a certain extent to all ligand-based methods and to
the pharmacophore modeling methods described in this chapter. In fact, align-
ments obtained from bound ligand conformations often lead to less predictive
models [93].

Typically, the best alignments for CoMFA analysis are obtained manually by
closely superimposing similar chemical groups. However, when working with
conformationally flexible compounds, the alignment task may become a too
complex or simply tedious task and automatic alignments may become methods
of choice. These may be substructure-based or common feature-based pharma-
cophore alignments such as GASP or Catalyst.

The CoMFA field calculations are performed at each point in a typically rect-
angular grid with a spacing of 2 Å. The resulting field descriptors are used as
input for PLS analysis in order to obtain a QSAR model [93]. PLS carries out re-
gression using latent variables from the independent and dependent data that
are along their axes of greatest variation and is typically applied when the inde-
pendent variables are highly correlated or the number of independent variables
exceeds the number of observations [94]. The resulting models are typically sub-
jected to a validation procedure using either leave-one-out combinations of train-
ing sets or a completely external test data set [93].

2.4.2.2 XED
As an alternative to describing molecules by their structural features (substruc-
tural elements, functional groups) and similarly to CoMFA, this approach uses
field points to describe the van der Waals and electrostatic minima and maxima
that surround molecules and compares these field points. The field points that
are used are derived from molecular electrostatic potential descriptors. The XED
model is marketed by Cresset Biomolecular and forms the basis for the proprie-
tary virtual screening technology FieldPrintTM [95].

The eXtended Electron Distribution (XED) force field was first described by
Vinter [96]. This force field proposes a different electrostatic treatment of mole-
cules to that found in classical molecular mechanics methods. In classical meth-
ods, charges are placed on atomic centers, whereas the XED force field explicitly
represents electron anisotropy as an expansion of point charges around each
atom. The author claims that it successfully reproduces experimental aromatic
� stacking. Later, others made similar observations [97]. This force field is now
available in Cresset BioMolecular’s software package [95]. Apaya et al. were the
first to describe the applicability of electrostatic extrema values in drug design,
on a set of PDE III inhibitors [98].

Conformational expansion of molecules (also called conformation hunting in
Cresset’s XedeXTM software module) applies a Monte Carlo approach combined
with fast molecular dynamics for ring conformations. The minimization of the
conformations is done using the XED force field, in order to assign correct
charges. Based on the results obtained by Boström [99], this method performs
comparably to other available methods when considering the RMS difference
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between the bound conformation and the closest conformation found consider-
ing the number of conformations found with an RMS value between 0.0 and
1.0 Å [99].

Three types of field points can be calculated with XED: positive and negative
extrema and van der Waals points (also called “sticky” points). These points are
calculated by moving probes on a grid of points placed above the van der Waals
molecular surface. Extrema values are found using a 3D simplex algorithm and
coincident positions are filtered out [100]. The field points are color coded and
their radius reflects the depth of the energy well. Pairwise molecule comparison
can be performed by using these field points only. A score reflecting the degree
of similarity of the two sets of field points is calculated. This avoids having to
pre-align the molecules as is the case for other field-based methods (CoMFA).
As an extension to this, Cresset developed the technology FieldPrint [101] to en-
code a molecule’s complex 3D field pattern in a 1D string and store it in a data-
base. This database can be searched with the field print of any molecule and re-
trieve compounds that do not necessarily belong to the same chemical class.
Cresset’s database contains over 1500 000 distinct commercially available com-
pounds [102].

A recent paper illustrates the use of this technology to design pyrrole- and
imidazole-based CCK2 antagonists [97].

2.4.3
Pharmacophore Fingerprints

Here we define pharmacophore fingerprints as the binary encoded information
(key) about the presence or absence of pharmacophore features and distances in
a single molecule or a compound collection. This concept can be extended to in-
clude the occurrence counts of distinct pharmacophores. Usually the focus is
put on two to four point fingerprints but larger number can be used and the
utilization of up to nine point pharmacophores has been described [6]. Pharma-
cophore triplets are widely used as traditionally they have been considered to be
most effective in terms of information content versus complexity. The pharma-
cophore space is binned and the method of binning and the bin size are of sig-
nificant importance. The most common application of pharmacophore finger-
prints is in the area of diversity and similarity calculations, compound library
focusing and selection, but 3D pharmacophore descriptors can also be used for
the analysis of structure–activity relationships, in decision trees and QSAR. Fin-
gerprint focusing methods commonly use similarity coefficients such as Tani-
moto to retrieve or classify compounds of interest out of a typically large collec-
tion.
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2.4.3.1 ChemX/ChemDiverse, PharmPrint, OSPPREYS, 3D Keys, Tuplets
Numerous examples of 3D fingerprint methods have been described in the lit-
erature, but in this review we focus only on those which can be classified as
software packages or parts of them.

One of the most popular applications is ChemX/ChemDiverse of Chemical
Design/Oxford Molecular (now Accelrys). Details of the approaches used there
are included in this review by Mason et al. [3]. Another example, of an in-house
pharmacophore fingerprint construction, is PharmPrint by Affymax [4, 5].

The Oriented Substituent Pharmacophore PRopErtY Space (OSPPREYS)
approach, introduced by Martin and Hoeffel [6], is in software terms an exten-
sion of CCG’s MOE package, written using SVL. The 3D oriented substituent
pharmacophores are aimed towards better representation of diversity and simi-
larity in combinatorial libraries in the 3D pharmacophore space. Combinatorial
library design often operates only on substituents rather than on the final prod-
ucts as the complications related to the conformational coverage in the 3D space
and the scaffold dependency limit the product-based approaches to smaller li-
braries. The 3D oriented substituent pharmacophores add two more points and
the corresponding distances to each substituent pharmacophore which repre-
sent the relationship of the substituents in the product with only little addi-
tional information. The fingerprints permit the creation of property space by
multidimensional scaling (MDS) and, since scaffold independent, can be stored
separately and applied to different libraries [6].

The Accelrys implementation of pharmacophore fingerprint descriptors is
called 3D Keys. This application is based on standard Catalyst feature defini-
tions and is a part of the Cerius2 software package [7].

The collection of all combinations of three (triplets) or four (quadruplets)
features in 3D space over all conformations of all compounds in the supplied
data set is computed. Each triplet or quadruplet is characterized by a set of
feature types and the corresponding inter-feature distances. Optionally, appear-
ance counts can be included in a fingerprint. Using these fingerprints, the
property space of molecules can explored on the basis of pharmacophore diver-
sity after MDS. These fingerprint descriptors can be used for diverse and simi-
lar selections, clustering, library comparison and optimization or applied to de-
cision trees and QSAR. Finally, relevant pharmacophore hypotheses can be ex-
tracted from the keys and used for database mining. 3D Keys can be derived
both from small molecules and from three-dimensional receptor binding site
features.

Another, similar application is Tripos Tuplets, which handles two to four
point fingerprints, with the option of requesting the presence of certain features
or substructures in the fingerprint. Tuplets can be used for clustering, can pro-
vide the basis for similarity selections and can utilize both ligand and target in-
formation. Tuplets can be applied for the purpose of identifying alternative
binding modes as well as for deriving hypotheses from compounds, UNITY
queries or binding pockets, which then can be analyzed using multiple similari-
ty measurements [8].
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2.5
Other Methods

2.5.1
SCAMPI

Most of the above-mentioned pharmacophore generation techniques use a small
number of user selected molecules, commonly called a dataset, to derive the
pharmacophore models. With the advent of high-throughput methods [103],
there was a need to extract pharmacophore information from much larger data-
sets.

SCAMPI (Statistical Classification of Activities of Molecules for Pharmaco-
phore Identification) is a program developed in C language by Chen et al. [104].
According to the authors, it allows the use of datasets of approximately 1000–
2000 compounds. The SCAMPI program’s implementation has been done to al-
low users to visualize the molecules and the generated pharmacophores in the
Sybyl environment.

Two different, but connected, spaces are searched by the program:
1. the conformational space, representing all possible conformations of the com-

pounds;
2. the correspondence space, representing all the possible correspondences of

chemical features and configurations among different compounds.

As opposed to other pharmacophore generation methods that treat the confor-
mer expansion and pharmacophore identification phases separately, SCAMPI
combines the two searches and lets them depend on each other. Figure 2.2 illus-
trates the workflow used by SCAMPI.

SCAMPI reads multiple MOL2 files containing structures and a data file con-
taining the biological activities. The conformational expansion of the molecules
is done by applying random search techniques, with no post-clustering. This
search is performed in Cartesian and internal coordinate space.

The pharmacophore points are represented by chemical features, in addition
to specific atoms such as nitrogen, oxygen, sulfur, phosphorus, fluorine and
other halogens). The correspondence search uses a recursive partitioning algo-
rithm, comparable to the FIRM and SCAM programs [104]. The split criterion
used by SCAMPI to partition the whole data set in multiple subsets uses a Stu-
dent’s t-test corrected by the Bonferroni p-value. The test is based on the pres-
ence or absence of a feature also called molecular descriptor. The absence of a
feature means that this feature could not be identified in any of the generated
conformations. The molecular descriptor that gives the highest t value is the
one selected for the split. Both a substructure and a rule-based search method
have been implemented for the detection of features represented by groups of
atoms and features represented by single atoms.

The pharmacophore build-up procedure is similar to that in Catalyst HipHop.
Two-point pharmacophores characterized by the two features and a binned dis-
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tance are searched first. A new point is added only if found, and the process
continues until no more pharmacophore points can be found. Pharmacophores
are already recorded in the conformer generation phase. The activity of mole-
cules is handled in a semi-quantitative manner.

The authors illustrated the approach by using two datasets: 1650 MAO inhibi-
tors from Abbott and 114 ACE inhibitors. The pharmacophores identified by
the program match some known SAR, especially the multiple mechanism of ac-
tion in the MAO series [104].

2.5.2
THINK

THINK (To Have Information aNd Knowledge) is a modular system developed
by Treweren Consultants [105] to assist with lead generation and optimization.
This system allows structure-based virtual screening, data analysis and pharma-
cophore profiling and is organized in different modules. Around a core module
that provides chemical structure reading and writing, command scripts for
batch and server jobs, there is a 2D module for data analysis and de novo deriva-
tive generation capabilities, a 3D module for 3D coordinate generation and con-
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former generation, a pharmacophore module for pharmacophore perception, a
Microsoft GUI module only available for the Microsoft® Windows version of
the program and a Screening Database module consisting of Treweren’s current
collection of drug-like molecules.

In THINK, molecules can be built using a 2D editor and the program reads
MOL, SD, SMILES and PDB files. Three-dimensional coordinates of molecules,
when not available from the input file, are generated automatically by the pro-
gram itself.

Two classical methods are available in THINK to perform the conformational
expansion of molecules: systematic search and random search. When the sys-
tematic search option is used, the use of contacts check avoids high-energy con-
formations and reduces the overall processing time. The random method uses a
random number generator to select the conformations from within the esti-
mated total number of conformations. The implementation of the program does
not prohibit identical conformations to be output resulting from symmetry.
These conformations are used in the pharmacophore generation and site search
modules.

The so-called pharmacophore centers use classical chemical functions such as
donors, acceptors, acids, bases, hydrophobic and positive and negative charges
functions. Metal ions and electron donor lone pairs are possible centers. The
users can also define their own functions.

THINK considers fuzzy two-, three- or four-center pharmacophores. If a given
molecule contains more than three or four centers, then all possible groups of
two to four centers are taken. The distances (including a tolerance) between the
pharmacophore centers are measured exactly and then allocated to distance
bins, each distance being represented by the bin into whose range it falls. The
distance bins are used to transform the distances within each pharmacophore
into a set of integers that give a more compact representation of the pharmaco-
phores.

For example, let us consider a two-center pharmacophore that has a distance
of 4.85 Å between the centers. Applying a distance tolerance of 0.25 Å gives a
range of possible distances between 4.6 and 5.1 Å. The default distance bins
that cover this range are 4.0–5.0 and 5.0–6.0 Å: 80% of the distance range lies
within the 4.0–5.0 Å bin and 20% within the 5.0–6.0 Å bin. Hence this two-cen-
ter pharmacophore would generate two fractional pharmacophores, one with a
count of 0.8 and the other with a count of 0.2.

Pharmacophore profiles are defined that represent the set of all the pharma-
cophores found across the conformers of a series of conformers or series of
molecules. Each pharmacophore added to the profile has to be unique. This
profile will help in showing the spread of pharmacophores across the conforma-
tional space of a molecule or a series of molecules. No sum of the exhibited
pharmacophores or normalization is done. There is no direct graphical repre-
sentation of pharmacophore models. The pharmacophores can be saved to a file
in CSV format that can be imported into a MySQL or Oracle database. This
approach permits the use of standard SQL queries to extract common pharma-
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cophores within sets of molecules, helping to discriminate between active and
inactive compounds.

The Receptor Site search module of THINK uses these pharmacophores to
eliminate quickly conformations of molecules that cannot bind to a receptor
site.

2.5.3
Feature Trees

Feature trees have been described by Rarey and Dixon [106] as a new way of
analyzing the similarity of molecules. This approach is based on building trees
that represent molecules. These trees describe the major building blocks of mol-
ecules, in addition to their overall arrangement. They are conformation indepen-
dent. Different types of pairwise comparison algorithms are available to com-
pare trees of different molecules.

2.5.4
ILP

Inductive logic programming (ILP) is not a pharmacophore generation method
by itself, but a subfield of the machine learning approach. In this field, other
methods such as hidden Markov models, Bayesian learning, decision trees and
logic programs are available.

Sternberg and Muggleton described the use of ILP to analyze the SAR of a se-
ries of 28 ACE inhibitors [108]. This type of approach learns from observations
(examples) which often are chemical structures. Both active and inactive mole-
cules can be used, since each of them will help in defining rules. Properties
such as hydrophobicity, chemical connectivity and spatial relationships can be
encoded. An algorithm will then identify the property combinations that cover
most of the actives while covering the smallest number of inactive molecules.
The resulting rule can be saved and used either for refinement (with a new set
of active molecules not used in the first instance) or for prediction. No confor-
mer generation or alignment of molecules is necessary in order to formulate
the rule. However, this approach does not handle numerical calculations so
quantitative SAR cannot be modeled and only semi-quantitative (class-based)
models can be derived.

2.6
Conclusions

In this chapter, we have tried to demonstrate the great diversity of software tools
available to the researcher in the area of ligand-based pharmacophore modeling.
With the expansion of combinatorial chemistry techniques and the need to ma-
nipulate very large amounts of real or virtual chemical data, pharmacophore-
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based techniques have proved their potential in the areas of database mining
with pharmacophore queries and library design using pharmacophore finger-
prints.

A lot of effort has been invested over the past 20 years in the optimization of
the different steps of pharmacophore generation: molecular editing and 3D re-
presentation, combinatorial enumeration, conformational expansion and phar-
macophore perception methodologies for small drug-like data sets. However, we
note that today there are still some areas with potential for improvement in the
field of ligand-based pharmacophore modeling:
� Validation: most of the available packages only approach validation from a giv-

en angle. The problems of validation are addressed elsewhere in this book
[42].

� Chemical space coverage: it can be considered a limitation of the majority of
today’s ligand-based approaches that only small-sized sets of chemical struc-
tures – training (learning) sets – are used to derive pharmacophore models.
Consequently, these learning sets cover only a small portion of the chemical
space and the performance of the resulting models generally tends to de-
crease when evaluating large datasets or within other chemical classes of
compounds. As there is no unique answer to complex problems such as mul-
tiple independent data, large and diverse datasets or receptor flexibility issues,
so-called ensemble pharmacophores consisting of multiple models generated
from different subsets of large sets of chemical structures could represent an
approach that should be pursued in the future.
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Steffen Renner, Uli Fechner, and Gisbert Schneider

3.1
Introduction

According to the Medicinal Chemistry Section of IUPAC, a pharmacophore is
the “ensemble of steric and electronic features that is necessary to ensure the
optimal supramolecular interactions with a specific biological target structure
and to trigger (or to block) its biological response” [1]. The concept of a pharma-
cophore regards ligand–receptor interactions as a function of individual func-
tional group contributions. The respective functional groups are also termed
“potential pharmacophore points” (PPPs), to stress that we do not know a priori
which functional group actually contributes to the ligand–receptor interaction.
A pharmacophore thus reflects the way medicinal chemists characterize the
binding ability of molecular structures to a particular biological target. As li-
gand–receptor interactions take place in the three-dimensional (3D) space, phar-
macophore models that are based on observed 3D interaction patterns represent
the most intuitive choice. However, if we do not know a receptor-relevant ligand
conformation or conformation ensemble, quantitative structure–activity relation-
ship (QSAR) studies that are based on 3D pharmacophore models can be mis-
leading [2]. In addition to the process of conformer generation, an often limit-
ing time-consuming step in pharmacophore matching methods is the 3D align-
ment of molecular features, e.g. matching a screening molecule to a given phar-
macophore model. To permit rapid database searching, the explicit alignment
step can be avoided by an alignment-free representation of pharmacophoric pat-
terns. The idea is to convert the spatial or topological distribution of PPPs and
other molecular features taking account of the shape and surface electrostatic
properties to a vector representation. Such vectors are referred to as “finger-
prints”, “bitstrings”, “correlation vectors” (CVs), or “spectra”, depending on the
type of information stored and the particular method that was used for their
generation. The trick is to compare these reduced molecular representations in-
stead of explicit 3D feature alignment. By this, significant reduction of calcula-
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tion time is gained for virtually screening large compound libraries for potential
ligands. In this chapter we will highlight the correlation-vector approach as an
example of alignment-free pharmacophore pattern matching.

The use of atom pairs as the basis of molecular descriptors has a long history
in the field of cheminformatics and a pioneering publication dates back to 1985
[3]. An atom-pair descriptor encodes information about a molecule by enumerat-
ing all possible combinations of two atoms and their pairwise distances. Atoms
are characterized by one or more selected properties such as element type, hy-
bridization state, partial charge or pharmacophore properties. The distance be-
tween a pair of atoms can be measured either in bonds (topological distance) or
as a through-space distance (topographical distance). Well-known descriptors
consider atom triplets or even atom quartets instead of atom pairs, as detailed
elsewhere in this book (for an extensive recent review of pharmacophore con-
cepts, see, e.g., Ref. [4]). PPP triplets allow for a more detailed representation of
the distribution of PPPs than pairs of PPPs. PPP quartets additionally consider
the chirality of molecules, which is not possible when relying on PPP pairs.
However, the number of features increases significantly with the consideration
of triplets and quartets. This inevitably leads to the mere binary count of fea-
tures (bitstring vector) because of storage and computational limitations, which
in turn requires careful maximization of their signal-to-noise ratio [5]. However,
even the computation of an atom-pair descriptor typically yields a high-dimen-
sional vector. The dimension of this vector depends on the number of features
that are assigned to atoms or PPPs and the handling of distances. Since the to-
pological or topographical atom-pair properties of a molecular structure are
mapped on a vector, the calculation of similarity between two structures is the
mere calculation of similarity between the two respective vectors. In other
words, similarity calculations based on atom-pair descriptors do not require an
explicit alignment of structures. The alignment-free similarity calculation of
atom-pair descriptors renders a fast virtual screening campaign of huge data-
bases possible.

Pharmacophore descriptors do not consider the element types of ligand atoms
but their generalization according to potential interaction types with a biological
target. This generalization paves the way for an interesting facet of pharmaco-
phore descriptors: Their inherent suitability for “scaffold hopping”. Scaffold
hopping or “lead hopping” is the identification of isofunctional structures with
different backbone architectures [6]. The ability to move to new scaffolds during
the drug development process may be desirable owing to, for example, intellec-
tual property constraints, poor synthetic accessibility or pharmacological profile
of a lead compound. The CATS (chemically advanced template search) descrip-
tor, a topological pharmacophore descriptor, was originally developed with its
proposed scaffold-hopping ability in mind [6], and will be reviewed in detail
here. Since pharmacophore descriptors are often characterized by their ability
for scaffold-hopping [6–8], a discussion of this aspect is part of this chapter.
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3.2
The Correlation-vector Approach

3.2.1
The Concept

Spatial autocorrelation is a quantitative measure of the probability of finding ob-
jects of defined properties within a distance of interest [9, 10]. The concept of
autocorrelation is mainly applied in fields such as geography, economics, ecol-
ogy or meteorology to describe the spatial distribution of features. The idea of a
molecular descriptor based on the autocorrelation concept was first introduced
into the field of cheminformatics by Moreau and Broto in 1980 [11] with the
ATS (autocorrelation of a topological structure) descriptor. For this approach, the
atoms of a molecule were represented by properties such as atomic mass or par-
tial charge. The distance between atoms was measured as the number of bonds
between the respective atoms (topological distance).

The ATS descriptor for a given topological distance d, ATSd, is calculated by

ATSd �
�A

i�1

�A

i�1

�ij�d�wiwj� �1�

where w is the atomic property, A is the number of atoms in the molecule and
�ij,d (Kronecker delta) = 1 for all pairs of atoms with distance d.

To obtain the full descriptor, the ATS autocorrelation is calculated over all de-
fined distances and concatenated to a vector {ATS0, ATS1, ATS2, � � �, ATSD},
where D is the maximum distance considered. Moreau et al. [12] were the first
to apply this approach to the three-dimensional conformation of a molecule.
For the 3D approach, the topological distance was replaced by the spatial Eucli-
dean distance between two atoms. Pairs of atoms were clustered into groups
with distances falling into predefined distance ranges (bins). All atom pairs
within one bin were treated as having the same distance. Gasteiger and co-
workers extended this approach to the spatial autocorrelation of the partial
charges calculated for surface points [9, 13]. The resulting vector values were
normalized by dividing the raw counts by the number of atom pairs in each dis-
tance range.

In 2000, Pastor et al. [14] presented GRIND (grid-independent descriptors), an
approach very similar to the autocorrelation descriptors. The GRIND descriptor
is calculated from force field-based interaction energies calculated for GRID [15]
points surrounding a molecule. Instead of summing up all products of interac-
tion energies for pairs of GRID points within a distance range, only the most
favorable energy contribution is stored for each distance range. Given a descrip-
tor vector, pairs of grid points can be identified that are sensible for each de-
scriptor value. Such a trace back from the descriptor to the underlying pairs of
grid points is usually not amenable to other autocorrelation approaches.
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In 1985, Carhart et al. [3] introduced a topological atom-pair descriptor using
atom types instead of atom property values: each atom is assigned to one atom
type class instead of an atom property value. Atom types are defined by their
element, the number of neighboring non-hydrogen atoms and their number of
�-electrons. The employment of these atom types leads to a distinction of chem-
ical elements according to the atom environment. Binary values are assigned to
each atom, i.e. an atom does or does not belong to a specific atom type. Conse-
quently and in contrast to the Moreau–Broto approach, the resulting autocorre-
lation vector for an atom type is equivalent to a histogram counting the frequen-
cies of the atom pairs of the considered atom type over the different atom-atom
distances. Calculation of the autocorrelation between pairs of atoms of different
atom types is referred to as “cross-correlation”. The Carhart descriptor vector
consists of the autocorrelation vectors for all atom types and the cross-correla-
tion vectors of all pairs of different atom types.

In 1996, Sheridan et al. [16] were the first to use pharmacophoric atom types
for an autocorrelation approach. This technique is suited to characterize ligand–
receptor interactions in a general way, allowing for more different but equally
interacting molecules to be identified as similar. Sheridan et al. also extended
the topological Carhart approach to the 3D case, and this was soon followed up
by a binary representation of such a descriptor [17]. In 2003, Stiefl and Bau-
mann [18] reported an autocorrelation approach using surface points represent-
ing pharmacophoric features.

The work of Schneider et al. [6] first focused on the scaffold-hopping ability
of autocorrelation descriptors, in this case topological pharmacophores. The
general description of the atoms with pharmacophore atom types in combina-
tion with the decomposition of molecules into atom pairs was shown to be
especially successful in finding new molecules with significant different molec-
ular scaffolds, maintaining the desired biological effect.

The following discussion considers three PPP pair descriptors: CATS (topolo-
gical PPP pairs), CATS3D (spatial PPP pairs) and SURFCATS (surface PPP
pairs). Figure 3.1 provides a graphical overview.

3.2.2
Comparison of Molecular Topology: CATS

The CATS descriptor belongs to the class of topological atom-pair descriptors.
The CATS descriptor does not characterize the atoms of each atom-pair by their
chemical element type. Instead, atoms are assigned to PPP types. The employ-
ment of the 2D molecular structure as the basis for the calculation is a crude
simplification of reality. However, even though the interaction between a ligand
and its binding partner is clearly a 3D event, the two-dimensional structure cap-
tures much about the physical properties and reactivity of a molecule [19]. A
clear advantage with topological descriptors is that they circumvent the problem
of conformational flexibility inherent to all 3D descriptor methods.
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The hydrogen-depleted molecular graph represents the basis for computing
the CATS descriptor (Fig. 3.2). Two types of information are derived from
the molecular graph: the topological distance matrix and the assignment of
PPPs to the nodes (atoms) of the graph which ultimately yields a “pharmaco-
phore matrix” (see below). The topological distance matrix of a molecular graph
contains the minimal number of edges (bonds) between all pairs of vertices in
the graph. The entries dij of the distance matrix D hold the shortest path mea-
sured as the number of bonds between vertex i and vertex j. (Note: an algorithm
that calculates D must guarantee that the shortest path between all pairs of
vertices is always found. This is of major importance if the molecular graph is
cyclic and different edges can be passed to make a connection between two
vertices.)

Our implementation of the CATS descriptor applies a breadth-first algorithm
to compute the distance matrix. The concept of this algorithm can be illustrated
with the canal-water analogy: if the graph represents a system of canals and
water is filled in this canal at one point, the water would spread out uniformly
in this system. The water would always “decide” to take the shortest path from
the starting point to all other points in the system. The algorithm uses a data
structure termed queue. A queue stores data according to the FIFO (first-in
first-out) principle. Details about this particular data structure can be found
elsewhere [20]. (Note: a variety of other all-pairs shortest path algorithms have
been described. One approach is the deployment of a single-source shortest
path algorithm. Such an algorithm finds the shortest path from a single vertex
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Fig. 3.1 The CATS family of descriptors:
CATS, CATS3D and SURFCATS. The degree
of abstraction from the atomic molecular
structure is assumed to be SURFCATS >
CATS3D > CATS. All descriptors are based
on a PPP-type description of the underlying
molecule. For each descriptor, pairs of PPPs
are transformed into a correlation vector.
CATS is calculated from the topological

distances of atom-based PPP pairs. For
CATS3D, the spatial distances between
atom-based PPPs are used instead.
SURFACTS uses the spatial distances
between PPPs on the contact surface of a
molecule. Here the PPPs represent the atom
types of the nearest atom to each surface
point.
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to all other vertices in the graph. An iteration over all vertices in the graph leads
to an all-pairs shortest path solution. Among the popular single-source shortest
graph algorithms is Dijkstra’s [21]. Algorithms that are specifically tailored for
the all-pairs shortest path provide a better running time. The Floyd–Warshall al-
gorithm is such an example [22].)

The derivation of the topological distance matrix from the molecular graph is
followed by the assignment of PPPs to the nodes of the graph. The following
list provides chemical definitions of the five PPP types that are implemented in
the CATS descriptor. The upper-case letter in parentheses is the abbreviation of
each PPP type. Additionally, a functional group description is paired with its
corresponding SMARTS in square brackets:
1. hydrogen-bond donor (D)

– oxygen atom of an OH-group – [#6H]
– nitrogen atom of an NH or NH2 group – [#7H,#7H2]

2. hydrogen-bond acceptor (A)
– oxygen atom – [#6]
– nitrogen atom not adjacent to a hydrogen atom – [#7H0]

3. positive (P)
– atom with a positive charge – [*+]
– nitrogen atom of an NH2-group – [#7H2]

4. negative (N)
– atom with a negative charge – [*–]
– carbon, sulfur or phosphorus atom of a COOH, SOOH or POOH group –

[C&$(C(=O)O),P&$(P(=O)O),S&$(S(=O)O)]
5. lipophilic (L)

– chlorine, bromine or iodine atom – [Cl,Br,I]
– sulfur atom adjacent to exactly two carbon atoms (C–S–C) – [S;D2;$(S(C)(C))]
– carbon atom adjacent only to carbon atoms – [SMARTS omitted owing to

complexity].
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Fig. 3.2 Schematic of the CATS descriptor
calculation. (a) The hydrogen-depleted two-
dimensional molecular graph provides the
input. (b) The graph is simplified for the dis-
tance matrix computation: different bond
orders are not considered (unweighted
graph) and all element types are
disregarded. The algorithm starts at an
arbitrary chosen atom and visits all nodes of
the graph in a breadth-first manner, thereby
building up the distance matrix. The num-
bers at the vertices are used to reference
individual atoms in the distance matrix.
These numbers also illustrate the visiting
order of the algorithm during graph

traversal. Values on the first bisecting line of
the distance matrix are shown in bold. (c)
Potential pharmacophore points (PPPs) are
assigned to the atoms (D, hydrogen donor;
A, hydrogen acceptor; L, lipophilic). These
assignments are then employed to set up
the pharmacophore matrix. (d) Finally,
corresponding elements of the distance and
the pharmacophore matrix are combined to
yield the CATS descriptor. The descriptor is
depicted numerically as a correlation vector
(CV) and shown graphically as a histogram.
(e) Four examples of PPP–PPP distance
tuples and their respective occurrence in the
histogram.
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According to these definitions, each atom of a molecule is assigned to no, one
or two PPPs. Since the descriptor is based on atom pairs, a “pharmacophore
matrix” is built up. The entries pij of the pharmacophore matrix P hold the PPP
pair of vertex i and vertex j. If an atom is not a member of any PPP group, the
row and column that correspond to the atom remain empty. A single atom can
also belong to more than one PPP group. In this case, the entry pij of the phar-
macophore matrix P holds more than one PPP pair. All possible pairing combi-
nations of the five PPPs result in 15 pairs (DD, DA, DP, DN, DL, AA, AP, AN,
AL, PP, PN, PL, NN, NL, LL).

The information of the distance matrix and the pharmacophore matrix is then
combined to yield the CATS descriptor. Each entry pij of the pharmacophore
matrix P is associated with the corresponding entry dij of the distance matrix D.
In other words: Each PPP pair is related to the respective distance between the
two PPPs, and the PPP–PPP distance occurrences (PPP pair frequencies) are
counted. Usually, we consider a minimum distance between a PPP pair of zero
bonds, i.e. an atom is correlated with itself, and a maximum distance of nine
bonds. Thus, the final result of the CATS descriptor calculation is a 150-dimen-
sional correlation vector arising from 15 possible PPP pairs related to 10 differ-
ent distances (zero to nine). The final step is the application of a scaling
scheme to the descriptor vector. We developed three different schemes: no scal-
ing (raw counts), division by the number of non-hydrogen atoms in the mole-
cule and division of each of the 15 possible PPP pairs by the added occurrences
of the two respective PPPs. The latter reflects the idea that rare PPP types
might contribute in a special way to a ligand–receptor interaction, whereas
abundant types, e.g. lipophilic atoms, should be downweighted to avoid domi-
nance of the descriptor.

A particular property of the topological CATS descriptor is its speed of calcula-
tion. Thereby, the program qualifies for applications that deal with very large
numbers of compounds, e.g. virtual screening campaigns in early stages of the
drug discovery process.

3.2.3
Comparison of Molecular Conformation: CATS3D

Like many 2D descriptors, CATS has a counterpart in 3D space: the CATS3D
descriptor. While the topological pharmacophore approach has the advantage
that the time-consuming calculation of conformations can be avoided, the bind-
ing event is nevertheless a three-dimensional interaction between a ligand and
its receptor. Accordingly, it should be advantageous to exploit such information
if available.

The main difference in the correlation vector representation of a 3D confor-
mation in comparison with a topological representation of a molecule is that
the distances between the atoms are no longer shortest paths. Instead, Eucli-
dean distances between all atoms are used. Distances between atoms are not re-
stricted to integer values, so the distances have to be partitioned into a set of
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distance bins. Several such binning schemes have been proposed [9, 16, 17]. For
CATS3D we generally employ 20 distance bins that cover distances from 0 to
20 Å in steps of 1 Å.

For CATS3D we used the modified PATTY atom types [23] available with the
pH4_aType function in MOE [24]. Other PPP assignment schemes could also
be employed. PATTY provides six PPP types: cation, anion, hydrogen-bond ac-
ceptor, hydrogen-bond donor, polar (hydrogen-bond acceptor and hydrogen-bond
donor) and hydrophobic. Whereas the topological CATS descriptor allows as-
signments of more than a single PPP type to one atom, the CATS3D descriptor
employs a single PPP type per atom.

Using 20 distance bins for each of the 21 possible combinations of PPP pairs
resulted in a descriptor of 420 dimensions. The value stored in each bin is
scaled by the added incidences of the two respective features. Each dimension
(“bin”) of the CATS3D CV is calculated according to the equation

CVT
d � 1

N1 � N2

�
i

�
j

1
2
�T

ij�d �2�

where i and j are atom indices, d is a distance range, T is the pair of PPP types
of atoms i and j, N1 and N2 are the total number of atoms of types of i and j
present in a molecule and �T

d (Kronecker delta) = 1 for all pairs of atoms of type
T within the distance range d. The factor of 0.5 in the sum avoids double count-
ing of pairs. Pairs of atoms with themselves are not considered.

3.2.4
Comparison of Molecular Surfaces: SURFCATS

The SURFCATS approach is a further extension of the CATS3D concept. The
interaction between ligand and receptor is mediated by the surface between the
two molecules. Accordingly, it should be advantageous to describe molecules by
their surface properties. Generally, it is assumed that a surface-based description
of a molecule is less dependent on the scaffold of the ligand than a topological
or atom-based representation, and consequently should have an enhanced scaf-
fold-hopping capability [25, 26].

The first application of a surface-based pharmacophore correlation vector was
reported by Stiefl and Baumann in 2003 [18] with the MaP (mapping property
distributions of molecular surfaces) descriptor. They applied their MaP descrip-
tor for QSAR applications. To our knowledge, an application of this descriptor
to similarity searching has not been reported.

The surface points for the calculation of SURFCATS are taken from the con-
tact surface (we usually employ the Gauss–Connolly function in MOE with a
spacing of 2 Å). Each surface point is then assigned to the PPP type of the near-
est atom. Equation (1) is used to calculate the CV with surface points instead of
atoms. In contrast to MaP, the surface points are not equally distributed on the
surface of a molecule. The effect of this circumstance has not yet been analyzed
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in detail. We expect only a minor effect on descriptor performance. In fact, the
original and very successful surface autocorrelation approach of Wagener et al.
[9] did not employ equidistant surface points.

3.3
Applications

3.3.1
Retrospective Screening Studies

Chemical similarity searching can support the identification of novel molecules
that reveal similar biological activity as one or more query structures. Ligand-
based similarity indices allow chemical similarity searching in case of an absent
structure for the biological target of interest. This concept is frequently and suc-
cessfully employed for compiling activity-enriched subsets in early-phase virtual
screening and compound library design [27–30]. Fundamentally, these methods
rely on
� a representative reference structures (also termed “query” or “seed” structures)
� molecular descriptors that are correlated with biological activity (e.g., a phar-

macophore descriptor)
� an appropriate similarity metric (for an overview, see Ref. [31]).

“Retrospective screening” provides a means of evaluating these factors. The ba-
sic idea is to select a subset from a large pool of compounds (typically a com-
pound database or a virtual library) and try to maximize the number of known
actives in the subset, thereby forming a “focused library” [32]. Subset selection
is based on the pairwise chemical similarity between the query structure and
each molecule in the pool. The result of this calculation is a list ranked accord-
ing to descending similarity. Such a retrospective screening experiment can be
rated by the enrichment factor, ef [32, 33]:

ef � Sact

Sall

� ��
Pact

Pall

� �
�3�

where Pall is the total number of compounds in the database (pool), Sall is the
number of molecules in the subset, Pact is the number of “active” molecules in
the pool and Sact is the number of actives found in the subset. A method that is
superior to a random selection of compounds returns an ef > 1. The enrichment
factor can be visualized by an enrichment curve: Sall/Pall is plotted on the abscis-
sa and Sact/Pact on the ordinate. A well-performing similarity search should re-
sult in a curve above the diagonal line.

Pharmacophore CV descriptors are highly modifiable. Several parameters can
be altered and tweaked. Examples are the chemical definitions of the PPPs, the
considered minimum and maximum distance between an atom pair, the bin-
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ning scheme in case of a 3D descriptor or the scaling of the final CV. During
our work with the different flavors of the pharmacophore CV descriptor we car-
ried out several studies to evaluate parameter settings. Most of these experi-
ments employed 12 selected subsets of the COBRA dataset for retrospective vir-
tual screening. The COBRA dataset is a collection of reference molecules for li-
gand-based library design compiled from recent scientific literature [34], which
were divided into non-overlapping subsets. The 12 datasets were made up of a
set of active compounds (query structures) and the respective remainder of the
COBRA dataset as “inactive compounds” (virtual screening library). The sets of
active compounds contained ligands that bind to angiotensin-converting enzyme
(ACE, 44 compounds), cyclooxygenase 2 (COX2, 93 compounds), corticotropin
releasing factor (CRF antagonists, 63 compounds), dipeptidylpeptidase IV (DPP,
25 compounds), G-protein coupled receptors (GPCR, 1642 compounds), human
immunodeficiency virus protease (HIVP, 58 compounds), nuclear receptors
(NUC, 211 compounds), matrix metalloproteinase (MMP, 77 compounds), neu-
rokinin receptors (NK, 188 compounds), peroxisome proliferator-activated recep-
tor (PPAR, 35 compounds), �-amyloid converting enzyme (BACE, 44 com-
pounds) and thrombin (THR, 188 compounds).

In a first study, we investigated the influence of the dataset and the descriptor
on ligand-based virtual screening [33]. We employed the 12 different datasets
compiled from the COBRA dataset and two different correlation vector descrip-
tors, namely CATS and CATS3D, for which a single conformation was calcu-
lated for each molecule of the dataset with the program CORINA [35]. With the
exception of the GPCR dataset, considerable enrichment factors of up to 26 for
the first percentile of the similarity-ranked datasets were yielded with all three
descriptors. A comparison of the descriptors revealed that none of them is supe-
rior for all 12 datasets, but for some datasets there is a preferred one. The suit-
ability of the descriptors depends on the underlying dataset, i.e. the binding pat-
terns of a specific ligand–receptor pair. Distinct performances of the descriptors
were expected, as the CATS2D encodes topological information of PPPs, and
the CATS3D spatial information of PPPs.

Irrespective of the descriptor, the approximate classification accuracy seems to
be determined by the dataset. Some target classes yield better enrichment fac-
tors than others. We deduced two possible reasons for this behavior. First, the
descriptors may cover the essential binding pattern of particular datasets to a
different extent. Second, the individual datasets are defined at different levels of
specificity. Some include sets of ligands binding to individual receptor subtypes
(e.g., BACE, THR) whereas others comprise very loosely defined classes of
bioactive agents (e.g., GPCR, NUC). Whichever of these two reasons might hold
true, in either case the dataset with its inherent properties has a major influ-
ence on the outcome of a virtual screening experiment.

Since the enrichment factor discriminates only between active and inactive
compounds, we further investigated which active compounds were retrieved by
the two descriptors among the top-ranking ones. Figure 3.3 depicts this for the
first five percentiles of three dataset by means of Euler–Venn diagrams. It is no-
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teworthy that although the enrichment factors with different descriptors were
approximately the same, the active compounds among the top-ranking ones var-
ied. Figure 3.3 shows that a large number of compounds were exclusively re-
trieved with one descriptor, and that the intersection sizes of the descriptors
were rather small. These two observations sustain the hypothesis that each de-
scriptor covers a certain, and to a varying extent different, aspect of the ligand–
receptor binding pattern. Moreover, the information contents of the 2D and the
3D descriptors complement each other. The extent of completion can be mea-
sured by computation of the “cumulative percentages”: For a given dataset the
two descriptors gave rise to two different similarity-ranked lists. The active com-
pounds among the first 5% of these lists were extracted to obtain two sets of ac-
tive compounds. The sets were then united according to the union operator of
set theory. Finally, the number of elements of the united set was related to the
total number of active compounds of the particular dataset. Cumulative percen-
tages facilitated the retrieval of additional 5–51% of active compounds compared
with the exclusive employment of the topological CATS descriptor. Hence it
may be appropriate to unite the information encoded by different descriptors if
a similarity search is performed to cover more facets of the ligand–receptor
binding pattern under investigation. Willett and co-workers came to similar con-
clusions from their retrospective screening studies and recommend a “data fu-
sion” strategy for the combination of ranked lists [36, 37].

In a subsequent study, we examined the influence of seven similarity indices
on the enrichment of actives using the topological CATS descriptor and the 12
COBRA datasets [31]. In particular, we evaluated to what extent different simi-
larity measures complement each other in terms of the retrieved active com-
pounds. Retrospective screening experiments were carried out with seven simi-
larity measures: Manhattan distance, Euclidian distance, Tanimoto coefficient,
Soergel distance, Dice coefficient, cosine coefficient, and spherical distance.
Apart from the GPCR dataset, considerable enrichments were achieved. Enrich-
ment factors for the same datasets but different similarity measures differed
only slightly. For most of the datasets the Manhattan and the Soergel distance
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Fig. 3.3 Elements of the Euler–Venn
diagrams represent compounds that were
found among the first 5% of the similarity-
ranked list that results from retrospective
screening with the (a) COX2, (b) HIV
protease and (c) MMP datasets of the
COBRA dataset. The Manhattan distance

was employed as a distance measure.
Membership indicates that the respective
compound was retrieved by retrospective
screening with the corresponding descriptor.
The diagrams reveal that the three descrip-
tors complement one another to different
extents depending on the underlying dataset.



yielded the overall highest enrichment factors. One might deduce that if only a
single distance measure is applied, the Manhattan distance should be preferred
owing to its computational simplicity and altogether above-average perfor-
mance.

To what extent are the top-ranking active compounds identical if different
similarity metrics are applied? Each of the 12 datasets yielded seven similarity-
ranked lists obtained with the seven similarity metrics. For each dataset, the cu-
mulative percentages were calculated for the first 5% of these lists. This proce-
dure led to the retrieval of significantly more hits than found by any single sim-
ilarity metric. The increase of the cumulative percentages for all seven metrics
compared with the employment of only the Manhattan distance ranged from
additional 5 to 28% with an average of 19% over all 12 datasets. Our descriptor
comparison study [33] suggests that different descriptors complement each
other in terms of the top-ranking active compounds. The comparison of seven
similarity indices led to the conclusion that they complement each other in the
same way. Therefore, it might be advantageous to employ several molecular de-
scriptors and similarity metrics in parallel and thereby benefit from a unifica-
tion of the various definitions of “chemical similarity”.

Descriptor Scaling
Which influence do different scaling methods have on the performance of the
topological CATS descriptor? We addressed this question with a comparison of
three different ways of scaling the correlation vector descriptor [38]:
� No normalization. The values of the vector represent raw counts (“counts”).
� Division by the number of non-hydrogen atoms in the molecule (“normaliza-

tion1”).
� Division of each of the 15 possible PPP pairs by the added occurrences of the

two respective PPPs (“normalization2”).

The three scaling methods were assessed by enrichment factors that resulted
from retrospective screening campaigns. Retrospective screening was performed
with 12 different datasets, each of which was a subset of the COBRA dataset.
Altogether, normalization2 exhibited the highest performance of the three scal-
ing approaches: it achieved superior enrichment factors for 10 of the 12 subsets
and comparable values to the other two scaling methods for the remaining two
subsets. Differences in the enrichment factors were up to 173% compared with
the second-best scaling method. The normalization2 scaling method can be re-
garded as the most “sensitive” one: each of the 15 possible PPP pairs is scaled
individually, thereby taking into account the unequal occurrences of the respec-
tive PPPs within a molecule. This procedure guarantees a balanced scaling for
each PPP pair. A division of the complete descriptor by the number of non-hy-
drogen atoms (normalization1) puts less frequent PPP pairs in danger of becom-
ing minuscule. Thus, normalization1 may lead to an unintentional emphasis on
more common PPPs. According to our observations, this holds true in particu-
lar for lipophilic centers. If less frequent PPPs play a crucial role in the interac-
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tion pattern of a ligand and its binding partner, the inherent emphasis of more
frequent PPPs seems especially disadvantageous. The study clearly demon-
strated that appropriate descriptor scaling can tweak a similarity search. We
decided to employ the normalization2 scaling for the topological CATS correla-
tion vector descriptor in future applications. Similar experiments led to compar-
able conclusions for the CATS3D descriptor (unpublished data). However, one
should always keep in mind that each virtual screening campaign presents nov-
el challenges and requires careful selection of all parameters.

In the following, we summarize the outcome of several studies that addressed
further questions related to appropriate descriptor calculation.

“Fuzzy” Binning
We explored the application of a “fuzzy” binning scheme for the CATS descrip-
tor [38]. Given the occurrence c of a specific PPP pair spaced n bonds apart,
then the counters of the bins that are associated to the same PPP pair in the
distance n+ 1 and n–1 are incremented by bc, where b has values between zero
(no fuzzy binning) and 1. The increase b was performed in steps of 0.1, and
normalization2 was employed. Again, evaluation took place in terms of the en-
richment factor for the 12 subsets of the COBRA dataset. To our surprise, the
enrichment factors were only insignificantly affected with respect to the esti-
mated error margins. We concluded that it seems to be reasonable not to apply
a fuzzy binning scheme for the topological CATS descriptor if enrichment fac-
tors are of interest. This result is in contrast to studies with three-dimensional
descriptors where “fuzzification” had proven to be useful for similarity search-
ing [16, 17, 39, 40].

“Binarization”
The number of virtually screened compounds is often very large in early stages
of the hit- or lead-finding process. The application of ligand-based similarity
searching at this point in drug discovery requires the calculation of many pair-
wise compound similarities. These calculations can be speeded up with binary
encoded descriptors since binary operations are computationally less expensive
than numerical operations. Moreover, binary encoded descriptors occupy less
space than descriptors composed of integers or floating-point numbers on inter-
nal and external storage devices such as random access memory and disks. In-
dividual values of the topological CATS and the CATS3D descriptor vector are
floating-point numbers. To generate binary CVs, we converted the “holographic”
(i.e. real-valued) vectors to a binary representation: Each value of the descriptor
vector was set to one if its numerical value was greater than zero. Otherwise,
i.e. if the value was zero, it was left unchanged. This “binarization” was moti-
vated by the outcome of a prior neuro-fuzzy analysis that was aimed at the clas-
sification of active from inactive compounds [41]. Again, the 12 datasets com-
piled from the COBRA dataset were employed. Retrospective screening studies
were performed to assess the influence of the binarization on the enrichment
factor [42].
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Holographic and binary representations of the CATS and CATS3D descriptor
were analyzed in detail. A deviation was termed “significant” if the enrichment
factor between the two representations differs by more than 20%. With the to-
pological CATS descriptor we obtained equal enrichment factors for three data-
sets, a better performance of the holographic representation for seven datasets
(among which were three significant differences) and one non-significant better
performance of the binary vector. Retrospective screening with the CATS3D de-
scriptor led to similar results: equal enrichment factors for two datasets, greater
enrichment factors of the holographic representation for five datasets (among
which were three significant differences) and four non-significant better perfor-
mances of the binary vector. The holographic descriptor vector seems to be ad-
vantageous for the two CATS descriptors. However, significant performance
gains of the holographic descriptor compared with its binary counterpart were
only achieved for three of the 11 datasets. These performance gains ranged
from 22 to 43% with most being less than 27%.

The overall correlation between the holographic data and the binary data for
the first 2% of the screened dataset was 0.94 and 0.92 for the topological CATS
and the CATS3D descriptor, respectively. These high correlations provide addi-
tional evidence of similarity between the holographic and the binary pharmaco-
phore-based descriptor vectors. The “binarized” CATS and CATS3D descriptor
can be employed for rapid similarity searching without losing significant enrich-
ment of actives in the virtual hit lists. It might even be rewarding to convert
other non-binary pharmacophore descriptors to their binary counterpart when
large numbers of compounds impede the application in chemical similarity
searching.

Conformation Dependency
Finally, we examined the impact of molecular flexibility on virtual screening
with CATS3D [43]. Using a descriptor based on the 3D conformation of a mole-
cule (e.g., CATS3D), one might assume that it is essential for new molecules to
be presented in a conformation near to the conformation of the reference to be
considered as similar. Consequently, it is often the strategy to calculate a set of
multiple conformations per molecule of a database. This is based on the obser-
vation that for most molecules multiple conformations exist with comparable
energies. One of these usually binds to the receptor, but not necessarily the one
with the lowest energy [44]. However, calculating multiple conformations can be
rather time consuming. On the other hand, CATS3D has been shown to per-
form better than CATS for some classes of molecules, using only a single con-
formation [33]. To test the impact of multiple conformations, co-crystal struc-
tures of 11 target classes served as queries for virtual screening of the COBRA
database. Different numbers of conformations were calculated for the COBRA
database with the programs CORINA [35] and ROTATE [45] for the purpose of
retrospective screening. We found that using only a single conformation already
results in a significant enrichment of isofunctional molecules. This observation
was also made for ligand classes with many rotatable bonds. The impact of
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using multiple conformations on the enrichment of actives was generally low.
Only for some classes of molecules was considerable improvement in the en-
richment of active molecules observed when multiple conformations were con-
sidered. We conclude that CATS3D provides a 3D virtual screening approach
that is only moderately dependent on the presence of conformations that are
close to the “bioactive” conformation of a molecule to estimate its biological ac-
tivity.

3.3.2
Scaffold-hopping Potential

The ultimate goal in virtual screening is to find the maximum number of maxi-
mally diverse active compounds from a given chemical subspace. There are sev-
eral reasons for seeking a set of diverse structures. Diverse structures offer the
medicinal chemist a choice in terms of chemical accessibility and prospects for
lead optimization. Multiple leads (“backup” compounds) lower the chance of
drug development attrition in case of undesirable ADMET (absorption, distribu-
tion, metabolism, excretion and toxicity) properties. One criterion for a diverse
set of molecules is the presence of different scaffolds. This concept is based on
the idea that drug-like molecules are built up from a scaffold (framework) and
side-chains [46]. A recently published method for scaffold classification inspired
us to tackle the question of the scaffold-hopping capability of different virtual
screening methods [8]. The program Meqi (molecular equivalence indices), de-
vised by Xu and Johnson [47], was used to classify the scaffolds. First, the full
molecular representation was simplified to a scaffold representation or to a re-
duced scaffold representation (Fig. 3.4). Subsequently, an equivalence number
for each scaffold or reduced scaffold was calculated with a modified Morgan al-
gorithm [48]. To assess the scaffold-hopping ability of the CATS family pharma-
cophore pair descriptors, we used the MACCS keys as a second class of descrip-
tors (based on a substructure fingerprint) in the retrospective screening experi-
ment [65]. To summarize: we employed 10 different datasets, four descriptors
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Fig. 3.4 Definition of scaffold (Sc) and re-
duced scaffold (ReSc). In this work we
defined the scaffold of a molecules as the
side-chain depleted molecular graph without
annotation of atom types. A reduced scaf-

fold is a more general representation which
does not discriminate between rings consist-
ing of different numbers of heavy atoms, but
systems containing different numbers of
rings are still not considered being equal.



(CATS, CATS3D, SURFCATS, MACCS) and three molecular representations
(full, scaffold and reduced scaffold representation).

Intuitively, one would assume that the scaffold-hopping capability would be
best for the descriptors that encode molecules at a high level of abstraction from
the chemical structure. According to this hypothesis, the resulting order should
be SURFCATS > CATS3D > CATS. The conceptually different substructure-
based MACCS keys might be assumed to be the most conservative similarity
searching method in terms of scaffold hopping: Substructures represent “exact”
molecular fragments – not allowing for ambiguities. However, it has already
been shown that the MACCS keys can be superior to 3D pharmacophore pair
descriptors for the task of clustering actives within compound databases [17].
On the other hand, this behavior might have resulted from sets of structurally
very similar active molecules.

Retrospective screening was performed in the same manner as by Fechner et
al. [33], leaving out the two very general classes GPCR and nuclear receptors.
The average enrichment factors for the first 5% of the database are shown in
Fig. 3.5.

As stated previously for the topological CATS descriptor [31], the influence of
different similarity metrics on the overall enrichment is marginal. For the full
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Fig. 3.5 Averaged enrichment factors over 10
ligand classes from the COBRA database
(top 5%). Comparison of the performances of
MACCS, CATS, CATS3D and SURFCATS for
full molecular representations, scaffolds (Sc)

and reduced scaffolds (ReSc). Three
similarity metrics were applied: the Tanimoto
similarity (blue), the Euclidean distance
(red) and the Manhattan distance (yellow).



molecular representations, the order of the methods in terms of the enrichment
factors was found to be MACCS > CATS > CATS3D > SURFCATS. This order
is exactly the reverse of that intuitively expected for the enrichments of scaffold
or reduced scaffold representations: SURFCATS > CATS3D > CATS > MACCS.
Regarding the enrichment of scaffolds and reduced scaffolds, CATS performs
comparably to MACCS. An explanation for the high performance of the
MACCS keys in scaffold enrichment might be that the connectivity of the sub-
structures is not accounted for in the descriptor. This might lead to an effective
retrieval of molecules with slightly different scaffolds but the same side-chain
decoration.

A different outcome can be observed for the enrichment of single activity
classes. Figure 3.6 shows enrichment curves for three selected classes: COX-2,
HIV protease and neuraminidase. One can see that the descriptor performance
depends on the class of ligands. For all three examples, the shapes of the en-
richment curves for full molecular representations and the respective reduced
scaffold representations were similar. This might lead to the conclusion that
generally none of the descriptors focuses on the molecular scaffolds per se. As a
consequence, enrichment of different scaffolds should be most likely with de-
scriptors performing well in full molecule enrichment. The reverse, on the
other hand, seems not necessarily true, i.e. substructure searching might result
in a high enrichment of actives in a database of many molecules comprising
this particular substructure, while not finding other actives with a different scaf-
fold. We wish to stress that such conclusions should be treated with caution
since only retrospective studies were carried out using compound sets repre-
senting artificially compiled activity classes. Typically, these structures are the re-
sult of a limited number of lead optimization projects and might therefore not
adequately represent the “drug universe”.

The mutual complementation of the different methods was examined in
more detail for four selected molecules: rofecoxib (COX-2), celecoxib (COX-2),
indinavir (HIV protease), and lanepitant (neurokinin receptor). The results are
shown in the form of Euler–Venn diagrams in Fig. 3.7. Apparently the methods
complement each other. Each method was able to retrieve actives which were
not found by the other methods. Interestingly, the performance of the different
descriptors varied significantly within one class of ligands (compare, e.g., rofe-
coxib and celecoxib).

Investigating the capability of several methods for the enrichment of scaffolds
or reduced scaffolds, we found only marginal differences from the enrichment
of full molecular representations. Most important, only small improvements in
scaffold hopping occurred using more general descriptors for the molecules in
comparison with less general descriptors. It appeared that the MACCS keys
were most successful in both retrieving active molecules and finding a diverse
set of actives. It remains a matter of debate whether it is a reasonable assump-
tion to leave out all information about the connectivity of the fragments. Addi-
tionally, bioisosteric replacements might be more difficult to find with the
MACCS keys.
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Summarizing, for the CATS family of descriptors we found that a higher ab-
straction level does not automatically lead to a higher percentage of retrieved
scaffolds. Only in the case of CATS3D and SURFCATS did a more general de-
scription lead to slightly higher enrichment factors for reduced scaffolds.

3.3.3
Prospective Virtual Screening

An overview of successful prospective virtual screening campaigns using CV
methods is given in Fig. 3.8. The first prospective application of the CATS de-
scriptor was a virtual screening study aiming at finding novel cardiac T-type
Ca2+ channel-blocking agents [6]. Using mibefradil (1, IC50 = 1.7 �M) as a refer-
ence structure, the 12 highest ranking molecules were tested experimentally.
Nine of these compounds showed an IC50 below 10 �M. The best hit was clopi-
mozid (2) with an IC50 below 1 �M. Clopimozid had a significantly different
scaffold than the reference structure.

Naerum et al. used a very similar descriptor termed “CATS2”, composed of a
slightly different PPP type definition, for the identification of novel glycogen
synthase kinase-3 (GSK-3) inhibitors [49]. Using the high-throughput screening
hit 3 as reference structure, a new inhibitor 4 with an IC50 of 1.2 �M was found.
Further experimental lead optimization led to molecule 5 with an IC50 of 0.39 �M.
This result demonstrates that CATS-based similarity searching is suited for find-
ing novel lead candidates. These initial hits can thereafter be optimized using
more focused virtual screening or molecular modeling methods which take into
account specific interactions that are relevant for the target under consideration.

Applications of CATS in ligand based de novo design with the program TO-
PAS (topology-assigning system) were also reported [50, 51]. TOPAS implements
an evolution strategy to assemble molecular fragments via a defined set of vir-
tual reactions. The molecular fragments were derived from retro-synthetic frag-
mentation [52] of the World Drug Index [53]. The newly assembled molecules
are scored with their CATS similarity to a reference ligand for the biological tar-
get of interest. For the first application of this approach, a potent potassium
channel blocker with an IC50 of 0.11 �M (6) served as a reference. One of the
designs led to the new inhibitor 7 from a different chemical class with an IC50

of 7.34 �M. Again, a slight modification of this new lead recovered an activity
within the order of magnitude of the reference compound, namely molecule 8
with an IC50 of 0.47 �M.

Another study reported the identification of novel cannabinoid receptor li-
gands using a combination of fragment-based de novo design and parallel syn-
thesis [54]. In a first experiment, small libraries of similar molecules to the ref-
erence structure 9 (Ki = 0.11 �M) were generated. Since the cannabinoid recep-
tors are part of the class of GPCRs, a fragment library tailored for GPCR ligand
design was employed. The two recurring motifs 10 and 11 were used as tem-
plates for the parallel synthesis. For each of the templates the core structure
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was maintained and two positions were identified for combinatorial optimiza-
tion. The best hits 12 and 13 exhibited a Ki of 2.0 and 0.3 �M, respectively.

We recently applied CATS3D similarity searching to find novel metabotropic
glutamate receptor 5 (mGluR5) modulators. This resulted in eight out of 29 ex-
perimentally tested molecules with a Ki below 50 �M [55]. All hits showed dif-
ferent scaffolds compared with the reference molecules.

Seven known antagonists of mGluR5 (14–20) with sub-micromolar IC50 were
used as reference ligands (Fig. 3.9). A hypothesis about the receptor-bound confor-
mation of these ligands was generated with the flexible alignment tool in MOE
[24]. The 20 000 most drug-like compounds – as predicted by an artificial neural
network approach [56] – of the Asinex [57] vendor database were screened with
each of the seven molecules as a reference. From the resulting hit lists, a set of
29 high-scoring molecules were selected and tested in a binding assay. To deter-
mine the specificity of the hits the Ki for the receptor most similar to mGluR5,
mGluR1, was also measured. Unfortunately, most of the ligands were only mod-
erately specific for mGluR5. Ligand 22 exhibited even a higher Ki for mGluR1
than for mGluR5. Sometimes small structural modifications within the molecules
determine specificity or trigger “jumps” in activity. Such “sensitive” structure–ac-
tivity relationships can hardly be modeled by general approaches like the CATS
descriptor family, because they lack the incorporation of any structure activity data.

In the mGluR5 study, all hits had different scaffolds than the reference mole-
cules. To estimate the degree of uniqueness of the hits and the degree of scaf-
fold hopping, we compared the average distance of each of the 29 hits from the
virtual screening campaign with its respective nearest reference compound
(�Dlib�) with the average distance between the reference molecules (�Dref�). We
applied three measures of molecular similarity: CATS3D with the Manhattan
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Fig. 3.6 Enrichment curves of the average
enrichment of actives for COX-2, HIV
protease and neuraminidase. Solid lines
denote the enrichment of the reduced scaf-
fold representations of the molecules and
dashed lines designate the enrichment of full
molecular representations. CATS enrichment

curves are shown in black, CATS3D in red,
SURFCATS in green and MACCS in blue.
The thin straight line (black) denotes the
theoretical retrieval of actives, assuming an
even distribution of actives over the
database.

Fig. 3.7 Euler–Venn diagram showing the
mutual complementation in the retrieval of
reduced scaffolds with CATS, CATS3D,
SURFCATS and MACCS. The first percentile
of the database was considered. Four
exemplary selected molecules, rofecoxib
(COX-2), celecoxib (COX-2), indinavir (HIV
protease) and lanepitant (neurokinin
receptor), were used. The left Euler–Venn
diagram in each example shows the mutual
complementation of the three CATS

methods. Red dots represent reduced scaf-
folds found by all three methods, green dots
were found by two of the methods and black
dots were found by only one of the methods.
The right diagrams show the complementa-
tion between all CATS methods (ALL CATS)
and the MACCS fingerprints. Red dots
represent reduced scaffolds found by at least
one CATS method and MACCS. Black were
fond either solely by MACCS or solely by at
least one of the three CATS approaches.



distance, topological CATS with the Manhattan distance and the MACCS keys
with the Tanimoto similarity. The average CATS3D distance of the virtual screen-
ing hits to their reference molecules was significantly smaller than the average dis-
tance between the reference molecules (�Dlib�= 1.41 ± 0.45, �Dref�= 2.66± 0.89). In
contrast, �Dlib� was only marginally smaller than �Dref� for the topological CATS
(3.31± 1.48 versus 3.6 ± 1.4). Employment of the MACCS keys resulted in �Dlib�
being smaller (less similar) than �Dref� (0.33± 0.11 versus 0.39 ± 0.15). This indi-
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Fig. 3.8 Prospective screening examples using the CATS de-
scriptor. CATS2 is a similar approach using a slightly different
definition of PPPs. TOPAS was used in two cases
for the de novo assembly of molecules.



cates a greater structural similarity among the reference set than between the vir-
tual screening hits and the reference molecules. Moreover, it is demonstrated that
the compiled library contains molecules that are different from the reference
structures – as estimated by MACCS substructure fingerprints – but are still con-
sidered isofunctional by the two CATS pharmacophore approaches. It is note-
worthy that a substructure fingerprint Tanimoto similarity threshold of 0.85 is
usually used for similarity searching [58, 59].

CATS3D was not only successful in scaffold hopping on the basis of the defi-
nition above (Meqi). We also observed a “substructure hopping”, which might
be seen as an equivalent to more traditional bioisosteric replacement strategies.
It seems that the CATS descriptor family represents molecules in a way that al-
lows a combination of scaffold hopping and “substructure hopping” at once.
This can result in a selection of molecules which would not be considered simi-
lar by other methods such as the MACCS keys.
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Fig. 3.9 Prospective screening for modulators of the mGluR5
modulators with CATS3D. Seven reference molecules with re-
ported low nanomolar activity were used (14–20).



3.4
New Methods Influenced by the Correlation-vector Approach

3.4.1
“Fuzzy” Pharmacophores: SQUID

Using pairs, triplets or even quartets of atoms as PPPs is one possibility for the
construction of a CV descriptor. An extension to this approach is to use pairs of
larger and more general objects, which might result in a more generalized and
abstract description of the molecule. The SQUID (sophisticated quantification of
interaction distributions) fuzzy pharmacophore is such an approach where pairs
of Gaussian probability densities are used for the descriptor calculation [60].
The Gaussians represent clusters of atoms comprising the same pharmacopho-
ric feature within an alignment of several active reference molecules. The incor-
poration of multiple aligned ligands within the SQUID approach resembles
conceptual similarity to the traditional idea of a pharmacophore model [61].

Based on an alignment of active molecules, tolerances for the features are
usually estimated to compensate for ligand and receptor flexibility. Pharmaco-
phoric features that are present in many of the reference molecules result in a
high probability and features which are sparse in the underlying molecules re-
sult in a low probability. Tolerances of the features which are considered by this
approach might be better represented by Gaussian densities than by rigid
spheres. For the resulting fuzzy pharmacophore models, different degrees of
fuzziness can be defined, e.g. the model can be very generalizing or more re-
stricted to the underlying distribution of atoms from the alignment. The fuzzi-
ness can be affected by the cluster radius, a variable which determines the ra-
dius within which atoms are clustered into PPPs.

For virtual screening, the 3D distribution of Gaussian densities is transformed
into a two-point correlation vector representation which describes the probability
density for the presence of atom pairs, comprising defined pharmacophoric fea-
tures. This representation is independent of translation and rotation like the
atom-pair descriptors, which renders rapid database screening possible without
the necessity explicitly to align the molecules with the pharmacophore model in
a pairwise fashion. Hence the fuzzy pharmacophore CV is useful for ranking
3D pharmacophore-based CV representations of molecules, namely CATS3D de-
scriptors. Consequently, SQUID can be characterized as a hybrid approach be-
tween conventional pharmacophore searching, similarity searching and fuzzy
modeling.

Figure 3.10, adapted from Palomer et al. [62], shows an alignment of the
COX-2 inhibitors M5, SC-558 and rofecoxib. According to these authors, essen-
tial interactions for specific COX-2 inhibition are mediated by the aromatic
rings A and B and the sulfonyl group. A set of pharmacophore model represen-
tations was calculated with different cluster radii, resulting in models with dif-
ferent degrees of fuzziness. The model with 1 Å cluster radius resulted in the
most detailed representation of the underlying alignment, correspondingly with
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the lowest abstraction from the scaffolds of the molecules in the alignment.
Using larger cluster radii leads to pharmacophore models with higher degrees
of generalization until, like the model resulting from 3.5 Å, the underlying
alignment is only marginally visible. For virtual screening it must be tested for
each target and each set of molecules in an alignment which degree of fuzzi-
ness results in molecules that are most likely to be active or possess some de-
sired characteristics. Retrospective screening for known active molecules using
models with different resolutions can serve this purpose.

In Fig. 3.11, the CV of the best found COX-2 fuzzy pharmacophore model
with a cluster radius of 1.4 Å is shown in comparison with the scaled CATS3D
vectors of the underlying molecules from the alignment. As one can see, the
fuzzy and thus “generalizing” representation of the underlying molecules from
the alignment is retained in the CV. It becomes clear that the SQUID CV and
the CATS3D CVs differ significantly in the meaning of their content. The
SQUID CV describes a broad range of descriptor areas which are favorable for
the desired biological activity, whereas the CATS3D descriptor contains a smal-
ler subset of the actual occurrences of atom pairs in a specific ligand. Conse-
quently, commonly used similarity indices such as the Euclidean distance or the
Tanimoto index, which are based on the assumption that both descriptors which
are to be compared represent objects in the same way, cannot be used to assess
the activity of the molecules under consideration. To overcome this problem, a
SQUID similarity score was developed:
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Fig. 3.10 SQUID fuzzy pharmacophore model for COX-2 inhi-
bitors. Using a larger cluster radius results in more general
models. From left to right: 1 Å, 1.5 Å, 2.5 Å, 3.5 Å.
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where ai is the value of the ith element of the SQUID CV, bi is the value of the
ith element of a molecule CV and n is the total number of dimensions. The val-
ue ai may be considered as the idealized probability of the presence of features
in bi. This results in high scores for molecules with many features in regions of
the query descriptor which have a high probability. To penalize the presence of
such atom-pairs in regions with a low probability, the denominator weights the
presence of atom pairs with the inverted probabilities of the descriptor of the
pharmacophore model (Note: a value of 1 was added to the denominator to
avoid division by zero and high scores resulting from a very low value in the de-
nominator of the term.) Accordingly, the SQUID scores for the CVRs from the
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Fig. 3.11 Comparison of the correlation vectors of a SQUID
COX-2 pharmacophore model and the CATS3D correlation
vectors of the three molecules used for the calculation of the
pharmacophore model.



COX-2 inhibitors shown in Fig. 3.11 decrease in the order M5 > SC-558 > rofe-
coxib.

Using SQUID, it had turned out that the overall probabilities for the presence
of pharmacophoric type pairs (e.g., the probability to find a hydrophobic–polar
pair, irrespective of the distance between the atoms) were often not optimal to
retrieve isofunctional ligands. For that purpose, a training step was included to
optimize these probabilities prior to the final virtual screening experiment. In
retrospective screening, an optimized COX-2 SQUID fuzzy pharmacophore
model outperformed CATS3D similarity searching using the single molecules
from the molecular alignment (Fig. 3.12).

SQUID fuzzy pharmacophores were applied to prospective virtual screening
with the aim of retrieving molecules inhibiting the Tat–TAR RNA interaction
which is crucial for HIV replication [63]. The pharmacophore model was built
up from one ligand (acetylpromazine, IC50 = 500 �M) and a fragment of another
known ligand (CGP40336A), which was assumed to bind with a comparable
binding mode as acetylpromazine. Using the optimized pharmacophore model
in Fig. 3.13 a, the 20 000 most drug-like molecules from the Specs database [64]
were screened for Tat–TAR ligands. A set of 10 molecules was selected for ex-
perimental testing. In a fluorescence resonance energy transfer (FRET) assay,
the best hit showed an IC50 value of 46 �M, which represents an approximately
10-fold improvement over the reference acetylpromazine. An alignment of this
hit with the reference alignment is shown in Fig. 3.13 b. For comparison,
CATS3D similarity searching was also applied using the two reference mole-
cules from the pharmacophore. This resulted in a best ligand with an IC50 com-
parable to acetylpromazine (IC50 = 500 �M).
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Fig. 3.12 Comparison of the enrichment curves of the SQUID
COX-2 model with CATS3D retrospective screening with the
molecules used for pharmacophore model calculation.



3.4.2
Feature Point Pharmacophores: FEPOPS

Recently, Jenkins et al. reported another approach, based on the pre-calculation
of more generalized representations of substructures, which are utilized for
chemical similarity computation [7]. In the FEPOPS (feature point pharmaco-
phores) approach, atoms of single molecules are clustered into four representative
PPPs using the k-means algorithm. Each atom is then assigned to the nearest
PPP. For each of the four PPPs, the sum of the partial charges and the sum of
the atomic logP (AlogP) values are calculated. The presence of hydrogen-bond
acceptors and donors is represented by two binary values. The four points are
sorted by increasing sum of partial charges, to obtain a defined alignment rule
for the quartets. The values of the four points and the values of all six distances
are then combined to a vector representation of the molecule. Ultimately, the
vectors are mean centered and scaled to unit variance. Similarity searching was
performed using the Pearson correlation coefficient as a distance measure. The
method was extensively tested in retrospective screening studies. Using scaffold
definitions with the program Meqi [47], FEPOPS performed well in finding scaf-
folds that are different from the reference molecules in comparison with several
other established methods.

3.5
Conclusions

In a growing number of studies, correlation-vector representations of pharmaco-
phoric features of molecules have been proven to be useful in similarity search-
ing and de novo design projects. They allow for rapid database screening, which
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Fig. 3.13 (a) SQUID fuzzy pharmacophore model of
Tat–TAR interaction inhibitors. (b) Alignment of the best hit
(colored by atom types) found with SQUID with the reference
alignment (red, acetylpromazine; green, fragment of
CGP40336A).



is gained by avoiding an explicit pairwise alignment step. Such methods seem
to be particular useful in early stages of the lead-finding process when only one
or some few reference compounds (“templates”, “seeds”) are known. Owing to
limitations of current definitions of “pharmacophoric features”, these methods
are rather coarse-grained, i.e. they perform similarity estimations between mole-
cules without taking into consideration worked-out structure–activity relation-
ship models. The CV encoding scheme represents a compromise between accu-
racy and speed, which renders most of these approaches unsuitable for lead op-
timization. Keeping these limitations in mind, alignment-free CV methods have
found their place in pharmacophore-based virtual screening. They complement
existing techniques by retrieving additional hit and lead candidates which would
not be found otherwise. Future developments of CV approaches will have to pro-
vide more elaborate weighting schemes of pharmacophore points and a method
for representing quantitative structure–activity relationship models.
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Abbreviations

2D two-dimensional
3D three-dimensional
ADMET absorption, distribution, metabolism, excretion, toxicity
ATS autocorrelation of a topological structure
CATS chemically advanced template search
CV correlation vector
FEPOPS feature point pharmacophores
GPCR G-protein coupled receptor
mGluR metabotropic glutamate receptor
PPP potential pharmacophore point
QSAR quantitative structure–activity relationship
SQUID sophisticated quantification of interaction distributions
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4.1
Introduction: from Linear to Non-linear Molecular Descriptors

Based on the ideas of Paul Ehrlich [1] and Emil Fischer [2], pharmacophores and
molecular similarity became the most prominent and frequently used concepts in
molecular design. In the early days of molecular design, the absence of protein
structures in atomic detail was the major motivation for comparing small mole-
cules. Owing to the tight binding of bioactive compounds to their specific receptor,
the compound can act as a partial negative imprint of the active site. Molecules
similar in their physico-chemical properties relevant for binding therefore have
a high chance of also showing a similar binding profile with respect to proteins.

Although nearly 29 000 protein structures were available as of March 2005
(http://www.rcsb.org/pdb/) and protein structure-based design techniques are
available, there are several applications making similarity-based methods a key
technology in molecular design. For whole classes of pharmaceutically interest-
ing target proteins such as GPCRs or ion channels, a protein structure with
atomic resolution is still out of reach. Here, similarity-based methods are with-
out alternative. Furthermore, molecular similarity plays an important role in tar-
get-unrelated pre- and post-processing steps such as library design and diversity
analysis, prediction of ADME properties or drug/lead likeness and the analysis
of screening results via clustering around active compounds. The concept of
molecular similarity underlies a large variety of computational techniques for
molecular design, ranging from pharmacophore elucidation via structural align-
ment of molecules to descriptor-based similarity searching. In this chapter, we
focus on a certain descriptor technology called Feature Trees.

Descriptors are widely used for efficient retrieval of similar compounds and also
for clustering and property prediction (see [3] for a recent review). The task of the
descriptor is to represent a compound such that a biologically (or chemically) re-
levant similarity can be deduced efficiently from the comparison of two descrip-
tors with a computer. The difficulty in developing a descriptor is, therefore, to find
a good trade-off between the coverage of important physico-chemical properties
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and efficient computability. For the latter, the format of the descriptor is of impor-
tance. Most descriptors in use today have a linear format: individual properties are
calculated from the compound and stored in a vector. These properties can be ex-
pressed by numbers (e.g. molecular weight, logP) or by booleans (such as the ab-
sence or occurrence of a chemical fragment). Since each individual property rep-
resents the whole compound, it is necessary, when comparing two compounds, to
compare the corresponding properties and calculate an overall similarity value
from simple numerical equations. This alignment-free comparison algorithm is ex-
tremely fast, but it also bears some severe disadvantages. Studying the process of
binding reveals that the relative arrangement of functional groups on the molec-
ular surface plays a dominant role. This relative arrangement, however, is only
weakly described in linear descriptors. Only on the basis of an alignment can
the relative arrangement be adequately considered. Furthermore, the information
concerning a certain part of a molecule is covered by several values in the vector.
This makes it difficult to apply these descriptors to combinatorial sets of com-
pounds such as combinatorial libraries or chemical fragment spaces.

At the other extreme, a three-dimensional (3D) model of the molecule itself
can be considered as a descriptor. In order to compare them, the molecules
have to be aligned in 3D space, which is a difficult task, mostly owing to the
conformational flexibility of most compounds of interest. Such 3D alignment-
based comparisons of molecules are therefore time intensive and bear the risk
of missing the right alignment.

The question arises as to whether compounds can be compared based on an
alignment but without the necessity to deal with conformational flexibility, i.e.
whether we can develop an alignment-based but conformation-independent descrip-
tor. The Feature Tree [4] is an attempt to achieve this goal. The descriptor is
based on a reduced representation of the molecular graph as proposed earlier
[5–7]. Although the comparison is more difficult than with linear descriptors
owing to the necessity for calculating the alignment, the algorithms are still effi-
cient enough to look at large data sets. With several examples, it can be shown
that the descriptor preserves the global arrangement of functional groups within
the molecule without depending too much on the molecular graph. In the fol-
lowing, we will describe the Feature Tree descriptor and the algorithms for
creating and comparing them. We will then summarize several applications
from virtual screening via chemical fragment space search and HTS data analy-
sis to similarity-driven visualization of compounds.

4.2
Creating Feature Trees from Molecules

A Feature Tree represents a molecule by a tree structure. The tree should capture
the major building blocks of the molecule in addition to their overall arrangement.
Detailed information of less importance for protein binding such as the molecular
graph should be neglected. In this way, not only is the complexity of the compar-
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ison problem reduced, but also so-called lead hopping between chemical classes
with compounds sharing the same wanted biological activity is supported. In or-
der to circumvent the problem of dealing with conformational spaces, 3D informa-
tion is neglected. Since most compounds do have rings, the question arises as to
why the molecule should be represented by a tree. The tree structure has a striking
advantage when it comes to comparison algorithms: Whenever a single edge of
the tree is removed, the tree falls into two well-defined pieces. In Section 4.3, three
efficient pairwise comparison algorithms will be explained. All of them are based
on this special feature of tree structures. Fortunately, although most compounds
have rings, most of them are still tree-like. As long as only short cycles occur, each
cycle can be considered as a building block and is then represented by a single
node in the tree. However, the tree representation is inadequate for long macro-
cycles and large, highly bridged ring systems such as fullerenes.

In order to create a Feature Tree, the major task is the division of the mole-
cule into building blocks. In a first step, each bond of the molecule is marked
as terminal, cyclic or acyclic. End-standing bonds have an incident atom with
only one bond which is easy to detect. In order to detect cyclic bonds, a depth-
first search algorithm customized for detecting biconnected components in
graphs can be applied [8]. After cutting all acyclic bonds, a first set of building
blocks is defined. All atoms not contained in any ring form a building block to-
gether with the connected end-standing atoms.

The second step comprises the division of the ring systems if possible. For
each atom within a ring system, the shortest cycle containing the atom is deter-
mined with another depth-first-search algorithm. After removing duplicates
from the set of rings, a cycle graph is constructed. Each cycle forms a node in
the cycle graph and two nodes are connected by an edge if the corresponding
cycles share at least one atom. Within the cycle graph, the depth-first-search al-
gorithm for detecting biconnected components can be applied again. Nodes
forming a cycle in the cycle graph cannot be separated from each other and are
therefore considered as a single building block. Acyclic nodes in the cycle graph
are considered as individual building blocks. Note that the process described
above does not reflect a division based on the smallest set of smallest rings
(SSSR). In contrast to SSSR, the division process within Feature Trees is
unique. This is necessary in order to guarantee the detection of identical com-
pounds. The process of dividing cycles is shown in Fig. 4.1. It should be further
noted that not every atom is assigned to a single building block. Within a ring
system, an atom might be assigned to two neighboring building blocks in the
case that the atom is contained in two rings. Once the building blocks are de-
fined, the Feature Tree can be easily constructed. Each building block is a single
node in the Feature Tree. Two nodes are connected by an edge if there is an
atom or two adjacent atoms covered by the corresponding building blocks.

Finally, the Feature Tree nodes are marked with labels describing the shape and
chemical properties of the building block. In principle, every kind of descriptor
can be used as a label provided that the descriptor is additive over the building
blocks. In our Feature Tree implementation, we normally work with a shape
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and a chemistry descriptor. The shape descriptor that we use has two components:
a ring closure count and an approximated van der Waals volume, which is the vol-
ume of the van der Waals spheres less the sphere overlap along covalent bonds. In
addition, a path length descriptor can be used, which is not described here (see
[9]). The purpose of the chemistry descriptor is to reflect the interaction pattern
that a building block can form with a surrounding protein. In order to do so, a
profile of potential interactions is derived from the building block. The FlexX in-
teraction scheme is employed, which represents hydrogen bond donors and accep-
tors and three subtypes of hydrophobic interactions (for details, see [10]). Both the
shape and the chemistry descriptor are obviously additive. For the comparison al-
gorithms, a function is required for calculating a similarity value between pairs of
shape and chemistry descriptors. If (a1, a2, � � �, an) and (b1, b2, � � �, bn) are the de-
scriptor vectors, we use the following equation, motivated by the idea that the
minimum defines the number of features both molecules have in common:

1 if
�

i

ai � bi � 0

c�a� b� � 2
�

i

min�ai� bi��
i

ai � bi

otherwise �1�

Similarities between a shape descriptor and a chemistry descriptor may be com-
bined to calculate the final similarity sim(m) for a match m of nodes represent-
ing two building blocks.
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Fig. 4.1 The conversion of a molecule into a Feature Tree de-
scriptor. The major phases are summarized on the right. A
cyclic system is divided into individual rings only if this can
be done uniquely. Features stored at the Feature Tree nodes
are shape or chemistry related. The chemical feature (interac-
tion potential) is color coded as follows: red, H-bond accep-
tor; blue, H-bond donor; green, hydrophobic.



4.3
Algorithms for Pairwise Comparison of Feature Trees

Once a Feature Tree can be created from a molecule, the question arises of how
to compare two Feature Trees. Using Eq. (1), we are able to compare two indi-
vidual Feature Tree nodes. Owing to the additivity of the features stored at a
node, we can also compare two sets of Feature Tree nodes. This is done by add-
ing the features over all nodes within a set and applying Eq. (1) again. Ob-
viously, we can also compare two complete Feature Trees in this way: we just
add all features in the two trees and apply Eq. (1). We call such a comparison
level-0, because no division of the tree into pieces has been performed. Level-0
comparisons closely resemble the way linear descriptors work. If we assume for
a moment that all components of a linear descriptor are additive and can be
computed for each building block individually (such as the volume descriptor),
adding the feature values over all Feature Tree nodes will create the linear de-
scriptor.

The quality of a descriptor can be significantly improved if features are com-
pared locally with consideration of the molecule’s topology rather than globally.
In order to achieve such a local comparison, we have to compute which mole-
cule parts should be compared with which; in other words, we have to compute
an alignment (or matching) between molecule parts. We call a comparison
based on such a subdivision of the molecule a level-x comparison. Since differ-
ent matchings will result in different similarity values, determining the match-
ing with the highest possible similarity value becomes an optimization prob-
lem.

In the computer science literature, several algorithms for matching trees can
be found [11–14]. They all perform a node-to-node matching between the trees.
In a Feature Tree, a node can represent building blocks of variable size from a
single atom to a ring system. A node-to-node matching is therefore inappropri-
ate. In order to match molecule parts of roughly the same size, small sets of
connected nodes, so-called subtrees, must be matched with each other. In this
way, a small chain can be matched with a ring of roughly the same size
although the ring might be represented by a single node and the chain by a se-
ries of 2–3 nodes.

A match of subtrees should reflect the fact that certain parts of the molecules
interact with the same sub-pocket of a protein. Let us now consider a set of
matches m1 = (a1, b1), m2 = (a2, b2) and m3 = (a3, b3). The matched subtrees must
be arranged in the molecules A and B such that the corresponding molecule
parts can interact with the same respective sub-pockets simultaneously. Whether
such an arrangement is possible can only be answered in 3D space. Neverthe-
less the topology of the trees can give us a good estimate. If in molecule A the
subtrees are in the order a1–a2–a3 and in molecule B in the order b1–b3–b2, it is
unlikely (but not impossible) that conformations for molecules A and B exist
which allow the placement of all three molecule parts in the same respective
sub-pockets. A matching is called topology-maintaining if, for all pairs m1, m2 of
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matches, the following holds: a1 is connected to a2 by a path containing only
unmatched nodes, if and only if this is also true for b1 and b2.

Once a topology-maintaining matching M of subtrees has been calculated, an
overall similarity value can be derived. For each match, we calculate the similarity
value as already described above for a level-0 comparison. For the whole matching,
a size-weighted average over all matches gives the final similarity value

Sm�A�B� �
1
2

�
m�M

size�m�sim�m�

�max size�A�� size�B�� � � 1 � ��min size�A�� size�B�� �� �2�

in which size( ) gives the number of non-hydrogen atoms covered by the
matched subtrees or in the whole molecule A or B and sim( ) gives the similari-
ty value for the individual matches. [Note that Eq. (2) has changed since the
original publication in 1998. The new form has the advantage of being indepen-
dent of the matching size, thus resolving optimization problems already men-
tioned in the 1998 publication.]

The parameter � allows the similarity value to be tuned towards global or par-
tial similarity. To illustrate the effect, let us assume that molecule A might be
fully contained in B and T = size(A) = size(B)/2; 100% of molecule A will be
matched to 50% of B with similarity value sim(m) = 1, resulting in a numerator
T. If �= 1, the denominator is 2T resulting in an overall similarity value of 0.5.
If, however, �= 0, the denominator is T, resulting in an overall similarity value
of 1.0.

In the following, we roughly describe the three algorithms available for calcu-
lating a subtree matching of Feature Trees. We intend to present the overall idea
here rather than covering every detail of the algorithm. For the latter, we refer
to the original publications [4, 15].

4.3.1
Recursive Division: the Split-search Algorithm

The first algorithm developed for Feature Tree matching follows the basic prin-
ciple of “divide and conquer”. The algorithm will subsequently divide the Fea-
ture Trees into smaller subtrees until the subtree size falls below a certain val-
ue. For an explanation of this algorithm, we have to define the division process
clearly. By cutting a tree edge, the tree is broken into two subtrees. A directed
cut is an edge e= (a,b) together with a direction from one node a to another
node b. A split is a pair of directed cuts belonging to two different Feature Trees.
A split defines four subtrees, two in each Feature Tree. It also defines two sub-
tree matches, the first match consists of the subtrees containing the from-nodes
and the second consists of the subtrees containing the to-nodes (see Fig. 4.2 for
an illustration of splits). Based on the similarity equation given above, a split
can be scored by calculating the similarity values of the two implicitly defined
matches.
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The split-search algorithm recursively divides the two Feature Trees by intro-
ducing splits. At every stage of the recursion, all splits which provide a topol-
ogy-maintaining matching will be scored. The three best-scoring splits are sub-
sequently considered. For each of them, the split-search algorithm is recursively
called twice, once for each pair of subtrees defined by the split. If the size of a
subtree falls below a certain threshold, the recursion is stopped and the similar-
ity value is returned. The split-search algorithm stores the splits which resulted
in the highest similarity value and returns the similarity value to the calling
function.

From an algorithmic point of view, two challenging tasks have to be resolved
here. First, an efficient algorithm for scoring all splits must be developed. Sec-
ond, a function is necessary to distinguish splits which result in topology-main-
taining matchings from those which do not. For both tasks, appropriate solu-
tions are given in the original publication [4].

A few aspects of the split-search algorithm are worth mentioning. First, and
most importantly, the algorithm is heuristic, since not all possible splits but
only the three best-scoring ones are evaluated. Second, the algorithm performs
redundant calculations: a set of splits can result in the same matching indepen-
dent of the order of the splits. The split-search algorithm creates the splits in a
certain order and, therefore, potentially creates a single matching multiple
times. Third, the split-search algorithm allows leaving nodes unmatched in the
middle of the Feature Trees without penalizing them. Despite these deficiencies,
the split-search algorithm is extremely fast and works well in virtual screening
exercises.

4.3.2
Subsequently Growing Matchings: the Match-search Algorithm

The most problematic issue of the split-search algorithm as described above is
that unmatched nodes may occur between matched nodes. This “gap”, also
called an inner-NIL match, becomes harder to justify the larger it gets since the
two matched parts of the molecule are assumed to interact with the same sub-
pockets of an active site (see also Fig. 4.3). In the following, we will assume that
inner-NIL matches are forbidden – which makes the development of an alterna-
tive matching algorithm necessary. We will first describe the new algorithm,
called match-search, in a recursive fashion which operates on two trees A and B.

The first step of the algorithm is identical with the initial call of the split-
search algorithm, namely the search for a small set of high-scoring initial splits.
The match-search algorithm then iterates through the list of splits performing
the following calculations for each split. The split produces two subtree-
matches, one on the from-node and the other one on the to-node side. The
from- and to-nodes adjacent to the respective cuts are called head-nodes in the
following. The algorithm refines these two subtree matches independently fol-
lowing the same strategy. For both subtrees from A and B of a match, all sub-
trees smaller than a certain size limit and including the head-node are enumer-
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ated. These subtrees are matched and scored and a small set of high scoring
subtree matches are kept. For each of these subtree matches, a series of cuts
are necessary to separate the newly formed subtree from the rest. As a result of
this step, we have a match of two subtrees containing the head nodes and a se-
ries of new subtrees from A and also from B lying behind the matched part
(see also Fig. 4.4). Every new subtree from A is now matched with every new
subtree from B. For all these subtree matches, similarity values can be com-
puted by recursively applying the match-search algorithm. Finally, the combina-
tion of matches resulting in the highest similarity value is chosen and the simi-
larity value is returned.

An implementation of the above algorithm in this recursive fashion would
have an exponential asymptotic runtime behavior. A simple observation shows
that such high computing demand is unnecessary. If two trees A and B with nA

and nB nodes, respectively, are compared, only 4(nA–1)(nB–1) different calls of
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Fig. 4.2 A split is a pair of directed cuts (black wedges). A
directed cut is an edge e=(a,b) together with a direction from
one node a to another node b. The split automatically defines
a division of two trees as well as the assignment of subtrees
(owing to the directionality).

Fig. 4.3 A matching assigns subtrees of one Fea-
ture Tree to subtrees of another (gray ellipsoids).
An unmatched subtree or node is either end-
standing (blue) or an inner node (red). An un-
matched inner node is called an inner-NIL match.



the match-search algorithm can be performed, since every call starts with a cer-
tain split. We only have to cache the results from the match-search algorithm in
a 2(nA–1)�2(nB–1) matrix and reuse them once the result is available. This tech-
nique converts the recursive algorithm into a dynamic programming scheme
with polynomial runtime.

The match-search algorithm forbids inner-NIL matches and therefore pro-
duces other matchings than the split-search algorithm. Its runtime is domi-
nated by the search of the optimal assignment of subtrees. Trees with a high
node degree can cause long computing times. On typical drug-like compounds,
however, the algorithm computes the matching within milliseconds.

4.3.3
Match-Search with Gaps: the Dynamic Match-search Algorithm

The match-search algorithm described above works well for similar Feature
Trees of equal sizes or if one tree is fully contained in the other tree. However,
as the algorithm cannot generate inner-NIL matches, variable linker regions be-
tween pharmacophoric groups cannot be modeled (see Fig. 4.5).

Therefore, a further improvement of the match-search algorithm was devel-
oped: the dynamic match-search algorithm. The new algorithm extends the dy-
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Fig. 4.4 The match search algorithm creates a matrix with one
cell for each pair of directed tree edges. The cell stores the overall
similarity of the two subtrees. The similarity value is calculated
with a dynamic programming scheme shown on the right. First,
an extension match (blue ellipsoid) is searched. Then the sub-
trees are cut and matched in all possible combinations. For each
combination, a similarity value can be extracted from the matrix
(exemplarily shown by the blue arrows). A maximum-weight
bipartite matching solves the assignment of the subtrees.



namic programming scheme of the match-search algorithm by allowing gaps (as
in sequence comparison algorithms [16]). A gap corresponds to an inner-NIL
match. The penalty score of each inner-NIL match depends on the size of the
skipped subtree. Instead of using a recursive procedure, the algorithm computes
every cell of the dynamic programming matrix (being the cache from Section
4.3.2) in a bottom up fashion. First, the terminal nodes of both Feature Trees
are compared and matched in all possible combinations by introducing a split
after each node. Then, the initial matches are extended by either a match-, merge-
or gap-operation. A match-operation aligns the nodes adjacent to the previous
match. A merge-operation aligns subtrees neighboring the previous match ignor-
ing the topology within the matched subtrees. This operation therefore introduces
a certain degree of fuzziness into the matching process. A gap-operation allows a
subtree in one of the two trees to be skipped. In each cell of the matrix, the result
of the three possible operations which gives the best similarity score for the cur-
rently constructed matching will be chosen. In the case that a branching node
is met, the dynamic match-search algorithm has to decide which outgoing edge
of one subtree should be mapped to which outgoing edge of the second. Every pos-
sible combination has to be evaluated and the best one chosen. The decision can
be made when all ingoing edges are already computed and are, therefore, present
in the dynamic programming matrix. In order to handle nodes with a high num-
ber of outgoing edges, a bipartite matching procedure [17] is used to solve effi-
ciently the problem of finding the best assignment.

The algorithm stops when the trees are completely covered by matches. After
having computed the entire dynamic programming matrix, an optimal match-
ing can be extracted using a back-tracking procedure to follow the path of the
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Fig. 4.5 Examples of different scaffolds for ACE inhibitors
having three pharmacophoric features separated by variable
linker regions.



highest local match scores. This procedure will find every possible alignment
between two unrooted trees. Unlike the other two algorithms, it does not rely
on the heuristics of choosing an initial split. Whether the resulting matching is
topology-maintaining can be easily checked in each of the three possible match-
extension operations. The runtime of the dynamic match-search algorithm
scales quadratic with the size of the Feature Trees (the size of the dynamic pro-
gramming matrix is growing in the number of edges) and the maximum node
degree (bipartite matching algorithm).

4.3.4
Building Multiple Feature Tree Models

With an algorithm for comparing Feature Trees in hand, we can now describe
how to build multiple Feature Tree (MTree) models. Based on the matching cal-
culated during the comparison of two trees, a new tree combining the informa-
tion from both input Feature Trees can be created. The nodes of the new tree
are the matches containing the features of the mapped subtrees of the two
trees. The edges are formed following the topology of the input Feature Trees.
The resulting MTree model has the same structure as a Feature Tree. Using the
same matching algorithms, an MTree model can be compared to other MTree
models or Feature Trees.

In order to build an MTree model from more than two Feature Trees, the dy-
namic match-search algorithm can be applied in a hierarchical manner. We de-
veloped two efficient heuristics for this task:
� The first strategy is to assemble a hierarchical model in a bottom-up fashion

based on a cluster dendrogram of the Feature Trees. Therefore, in the first
step, a cluster dendrogram of the Feature Trees is created. This is done by a
single linkage clustering algorithm using the pairwise similarity scores of the
Feature Trees. Starting at the bottom of the dendrogram, the molecules are
pairwise combined into a model. Each model is defined by an MTree, which
can be used like any other Feature Tree for comparisons. At the next hierar-
chy level, the models (MTree models) are also combined pairwise to create
new models. For the computation of the dendrogram of n trees, n(n–1)/2
comparisons are required. The complete MTree model of all Feature Trees
can then be computed with another n–1 comparisons.

� The second strategy is to add incrementally individual Feature Trees to the mod-
el (starting with two Feature Trees). In each step, the most similar Feature Tree
to the then-current model is chosen. This strategy affords n–i comparisons in
the ith step and n–1 steps altogether until a single MTree model remains.

MTree models constructed in this way can be used for screening purposes. By
merging the information of the underlying trees into an MTree model, virtual
screening can be done by simple pairwise comparisons. Hence we do not have
to compare the ranks of several virtual screening runs comparing individual
query molecules with each database molecule.
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Another advantage is that the matches in a model can be weighted by the lo-
cal similarity of the corresponding subtrees in those matches, thereby pronoun-
cing certain elements of the model. An exemplary application is provided in
Section 4.6.

4.4
Feature Trees in Similarity Searching and Virtual Screening

When it comes to selection strategies involving large numbers of compounds,
the term virtual screening (VS) has been used to describe the task of data reduc-
tion to a manageable size [3, 18–21]. The number of compounds to be com-
pared in a reasonable timeframe influences the compromise between descriptor
accuracy (2D, 3D, multiconformer 3D) and speed. Large databases of commer-
cially available compounds have been assembled and, unlike real compound col-
lections, such databases are easy to maintain. These searchable collections can
be extended to chemically accessible virtual libraries vastly exceeding the size of
any physical compound collection. Generally, fast ligand-based methods facili-
tate the screening of millions to billions of compounds and can be used as a
prefilter for more sophisticated 3D-based algorithms. Of course, active com-
pounds need to be at hand from either in-house data, literature search or patent
information. Efforts in virtual screening then focus on finding either close
structural analogs for lead optimization or diverse but biologically similar com-
pounds to open up novel chemical routes.

The latter scenario is sometimes referred to as scaffold or lead hopping [22–
25]. This is a formidable challenge for the descriptor and the similarity mea-
sure. While avoiding the chemical graph and atom type-based molecular repre-
sentation, the essential features required for activity have to be retained. By defi-
nition, such a task will be prone to picking out false positives and, therefore, re-
quires a fast search in large and diverse databases together with a tunable level
of similarity.

4.4.1
Virtual Screening

The first Feature Tree publication demonstrated the ability to retrieve known ac-
tives from databases in addition to the potential to bridge different structural
classes based on Feature Tree similarity [4]. A collection of 581 randomly chosen
compounds from the MDDR together with 391 active compounds covering five
target classes constituted the dataset for enrichment studies. Each compound
served as a query and enrichment rates were compared within the different tar-
get classes. The improved retrieval rates relative to random selection were com-
pared with results obtained using the 2D fingerprint descriptor from Daylight.
Enrichment rates for Feature Trees were either lower than with Daylight finger-
prints (ACE), similar (PAF, HMG) or higher (TXA2, 5HT3). The average over-
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lap of hits found by both techniques was about 50%. Careful examination of the
results revealed the potential of Feature Trees to retrieve actives that show low
2D similarity. Figure 4.6 shows such a lead hop example for active compounds
not retrieved by the 2D fingerprint-based methods.

In a publication dedicated to novel so-called affinity fingerprints, the same da-
taset as described above was originally used to compare a number of 2D de-
scriptors [26]. The hit rate was defined by the number of correctly classified hits
(with respect to the target class) within the 10 nearest neighbors for a given
query. Overall performance was measured by the mean hit rate of all 391 active
compounds taken once as a query. All descriptors showed hit rates of around
60–70% with Feature Trees slightly outperforming MACCS keys, Daylight fin-
gerprints and molecular hash key (Fig. 4.6).

In the circumstances surrounding more true to life drug discovery projects,
actives have to be retrieved from much larger virtual compound collections dur-
ing virtual screening. In this case, the modeler will invariably need a strategy
for selecting subsets of molecules in order to reduce the dataset to a more man-
ageable size. This is still very much an issue when the modeler wishes to inves-
tigate molecules using slower virtual screening approaches such as docking.
One such scenario involving the application of Feature Trees is presented below,
where a very large dataset of molecules was to be investigated using a combina-
tion of similarity-based and structure-based screening approaches.

The target protein was CDK2 with known 3D structure. Associated with the
target was a diverse set of 57 active molecules taken from the literature [27–32].
A couple of the actives can be seen in Fig. 4.7a, shown in red. The large dataset
of ~1.3 million compounds was compiled from vendor catalogs (including Al-
drich Rare Chemicals [33] and Chemstar, September 2002 [34]; doubly occurring
entries were removed). The object of the experiment was to apply available vir-
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Fig. 4.6 (a) Feature Tree search result based
on query (left) retrieves a high ranked (rank
5) active compound with low 2D similarity.
The corresponding feature trees are also

visualized. (b) Comparison of hit rates in an
enrichment study (Feature Trees, MDL Keys,
Daylight Fingerprints, Molecular Holo-
grams).



tual screening tools to these data in order to identify further potential CDK2 ac-
tives. Feature Trees were chosen as the similarity descriptor because of their
speed and lead hopping capabilities and also because the software allows inter-
active parameter tuning by the user. The descriptor was applied in the first in-
stance to identify molecules in the large dataset that showed similarity to the
available actives. Although a dataset of this size can be handled quickly by Fea-
ture Trees (for example, the dynamic match-search algorithm is fast enough to
search this number of molecules in about 40 min on a current single PC pro-
cessor: P4, 2.4 GHz), it was too large to be processed with slower modeling
tools in a reasonable amount of time. It was decided that approximately one-
tenth of the large dataset (130000 molecules) would provide a good-sized subset
for the structure-based part of the experiment. Feature Trees were then applied
in the second instance to select appropriate molecules to form the smaller sub-
set. How the selection was made was of great concern and critical to the final
outcome of the experiment.

In the ideal case, the smaller subset should of course contain all molecules
from the large dataset most likely to be potential CDK2-active molecules. The
simplest attempt to achieve this goal would be to calculate the similarity values
for all dataset molecules compared with one of the active molecules using Fea-
ture Trees and select the most similar 130000. This strategy brings with it the
following problem: the subset will be very restricted in terms of diversity. The
modeler often has the structure of an active molecule available but is actually
seeking new actives that contain a different scaffold in order to achieve a lead
hop. A superior subset should contain molecules similar to the actives, yet di-
verse amongst themselves. An improved attempt would take into consideration
all information available from the diverse set of 57 actives. Each dataset mole-
cule is compared with all the active molecules to give lists of the most similar
molecules to each active. The 130000 molecules most similar to any of the ac-
tives are then selected for the subset. However, we are now in danger of overfit-
ting the data. To avoid overfitting, the available data can be split so that one part
is used in a similar manner to select the subset, while the other part can be
used to measure the performance of the selection method. The final procedure
used in the experiment was as follows.

Ten of the known actives were picked from the 57. This can be done, for ex-
ample, by picking 10 actives at random, but could also be done more strategi-
cally by taking molecules representative of clusters after the actives were clus-
tered amongst themselves or simply by hand picking 10 of the molecules. The
remaining actives were hidden in the large dataset. Each dataset molecule was
compared with the 10 active molecules. To force the subset to contain molecules
similar to each of the 10 actives, the most similar 1300 molecules to each were
selected first to be part of the subset (multiply occurring molecules were of
course removed). The subset was then completed by taking the next most simi-
lar molecules to any of the 10 actives. The number of hidden actives present in
the subset was counted. In fact, what was more important was to note the pres-
ence of different chemotypes of the hidden actives in the subset. This hopefully
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will reflect the diversity among the rest of the subset, which is really what is of
interest to the modeler. It is easy to recognize at this stage the influence that
the selection of the 10 actives will have on the contents of the subset and how
the selection of the 10 actives can actually be optimized to achieve the desired
effect of finding the most diverse set of hidden chemotypes at the end; this was
how the experiment proceeded.

As mentioned above, the Feature Trees software allows to user to tune various
parameters to influence how molecules are compared with each other. When
using the dynamic match-search algorithm, it is possible to change, for exam-
ple, whether the alignment of a common molecule core or the alignment of po-
tential pharmacophoric groups at the edge of the molecules should be more im-
portant. Parallel to refining the selection of 10 actives, the parameters of the
software were tuned to also achieve the desired effect of finding the most di-
verse set of hidden chemotypes. This was actually done following the final selec-
tion of 10 actives but, in a more thorough experiment, these two steps could be
done in parallel or iterated.

With the final selection of 10 actives and tuned parameter settings for the Fea-
ture Trees software, 40 of the remaining 47 actives were present in the final subset
of 130000 molecules. The diversity of the subset is represented in Fig. 4.7a. Here,
two dataset molecules found to be simultaneously in the 1300 most similar mol-
ecules to two actives can be seen, along with the corresponding actives themselves
– the Feature Tree similarity between the molecules is also shown. A small table in
Fig. 4.7b gives some brief statistics of the dataset or subset size and the number of
hidden actives found at two stages of the subset creation.

This subset was further investigated using the slower modeling methods to
try to identify potential actives, known as plausible hits. An example of a mole-
cule selected from the results of a docking experiment is shown in Fig. 4.8. This
molecule had a similarity score of 0.93 to an active and is shown docked with
the typical kinase inhibitor binding pattern. Both the active and the plausible
hit are not drug-like from a medicinal chemistry perspective, but this example
demonstrates well how the Feature Tree descriptor captures similarity between
two molecules.

4.4.2
Virtual Screening Based on Multiple Query Compounds

For fuzzy virtual screening purposes, highly active molecules with different scaf-
folds are combined into an MTree model. By combining the information of
remotely related actives into a single model, efficient database searches with
molecule ensembles are possible.

Here, we provide an example of a previously published study [35] of an appli-
cation of our analysis strategy to an HTS data set for DHFR of E. coli [36]. The
goal was to find a good predictor for a correct classification of active and inac-
tive molecules using MTree models. The data set consisted of 100000 com-
pounds split in two equal-sized parts: a training set and a test set both with bio-
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logical activities. For a comparison of the MTree model approach with the stan-
dard Feature Trees similarity search, we decided to use a simple kernel classifi-
cation approach. Here, for an arbitrary given molecule t and for a given radius
�, let ���t) be the activity density of the arbitrary molecule t:
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Fig. 4.7 (a) Three of the 10 actives (colored
red) used to select the final subset are
shown with two “unknowns” (colored black)
found amongst their nearest neighbors. The
Feature Tree similarity values (calculated
with the dynamic match-search algorithm)

are also shown. The actives and unknown
molecules are diverse with respect to molec-
ular scaffold. (b) Statistics of the dataset or
subset size and the number of hidden ac-
tives found from the 47 at two stages during
the creation of the 130000 molecule subset.

Fig. 4.8 (a) A plausible hit molecule (top)
selected after completion of docking experi-
ments on the small subset of molecules. A
similar known active is shown beneath. (b)
The docking pose of the plausible hit in the
active site of CDK2 as predicted with the

docking software FlexX – the typical binding
pattern of kinase inhibitors around the hinge
region of the active site is clear to see. Pic-
ture created using PyMOL: DeLano, W.L.
The PyMOL molecular graphics system
(2002), http://www.pymol.org.
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Act being the set of all active molecules and U�(t) being the set of all molecules
within the Feature Trees similarity radius delta around molecule t. A molecule
is classified as active if the number of actives in its neighborhood is greater than
the threshold �. The cross-validation results for the classifier on the training set
supported the choice of �= 0.9 and �= 0.22. The train and test set were more diverse
than expected, so we went down to �= 0.8. We reported a ranked list of the top �

molecules with the highest activity density. For the MTree model approach, all
actives from the training set were clustered and the most diverse cluster centers
were selected. From this selection, several MTree models were constructed and
used for virtual screening of the test set. With the help of the MTree models
and the classifier, we independently selected 5000 molecules for further analy-
sis. The best MTree model retrieved more actives (20 of 119) from the test set
than the classifier (15) in the selection of the best scored 5000 molecules.

4.4.3
Tagged Feature Trees

Virtual screening often benefits from an expert bias which helps focus on more
desirable results, given in the form of additional information. A point in case is
docking under pharmacophore constraints [37] or the concept of relative phar-
macophores with a “special” internal reference point [38]. Yet another applica-
tion for a directionally biased compound comparison is the selection of chemi-
cal reagents where functional attachment points are aligned and pharmacopho-
ric features are examined relative to this point of reference by a procedure
termed GaP [39]. Other concepts which try to describe combinatorial products
in terms of their educts and need a special reference point are shape-based To-
pomers [24] and pharmacophore based OsPreys [40].

The Feature Tree comparison algorithm defines directionality by comparing
two trees and selecting one alignment of the nodes from among many possibili-
ties. It always finds the alignment with the best possible overall score. However,
there might be situations where a user-defined node match is desired in order
to incorporate expert knowledge in the search. With this in mind, an extension
of the Feature Trees match-search algorithm has been implemented where com-
mon user-defined substructures are forced to be aligned with each other. In fact,
the defined substructures are converted into special Feature Tree tag nodes,
which then always match each other in the Feature Trees matching. We briefly
describe three useful scenarios.

For example, ACE inhibitors display a distinct set of pharmacophore points (an
acidic group, a carbonyl group and a zinc binding group [41, 42]; see also Fig. 4.5).
Recently, the structure of the 3D target along with the co-crystallized ligand lisino-
pril (LPR) was published [43] revealing the binding mode as shown in Fig. 4.9a. As
there are acidic groups at both ends of the molecule, aligning the distinct zinc bind-
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ing and acidic group pharmacophore points in ACE inhibitors correctly is difficult
because they obviously display very similar characteristics. This is true of LPR itself.
Another ACE inhibitor is shown in Fig. 4.9 b, where thiolate replaces the carbox-
ylate group seen in LPR at the zinc binding position. The Feature Tree descriptor
chooses to align the ACE inhibitor to LPR in a back-to-front manner, matching the
thiolate zinc binding group to the carboxylate group in LPR, as in Fig. 4.9. By de-
fining a set of acidic substructures (for example, carboxylate and tetrazole) to be
tagged Feature Tree nodes, the substructures can be forced to match with each
other. Then, from this forced starting point (or forced initial split), the Feature Tree
comparison algorithm must only find the alignment between the remaining parts
of the two molecules. It is important to note that forcing a starting point in the
matching nearly always results in a lower similarity score for the alignment.

In a different application scenario, tagged nodes can be used to define a
known common anchor point in a set of molecules. A set of approximately 400
R-group instances from a combinatorial library (based around a quinazoline
core) forms an example of such a set of molecules, where the functional attach-
ment point forms the tagged Feature Tree node. A Feature Tree similarity
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Fig. 4.9 Two ACE inhibitors. (a) Lisinopril (LPR – the co-crys-
tallized ligand). LPR exhibits the three pharmacophore points
common to ACE inhibitors: a zinc binding (carboxylate), car-
bonyl and acidic group. (b) A second ACE inhibitor where the
zinc binding group is a thiolate group. The standard Feature
Tree descriptor aligns the inhibitor to LPR back-to-front with a
similarity score of 0.77, as shown on the left (the direction of
the arrow indicates the direction of the alignment to LPR
above). When the acidic group substructure is identified as a
tagged node (dashed oval), the alignment of the two inhibi-
tors is corrected although the similarity score falls to 0.44, as
shown on the right.



search was carried out in this set using a query R-group instance, both with
and without the tagged node approach, and the instances were ranked accord-
ing to similarity. The query and top results can be seen in Fig. 4.10. Without a
forced match between the common anchor points, the Feature Tree descriptor
identifies R-group instances as most similar which align with the query back-to-
front. This is because the alignment algorithm has no information about the
anchor points and searches for the globally best scoring alignment. Once the
tagged nodes are forced to match, the Feature Tree descriptor finds instances to
be most similar under the condition that the direction of the alignment is fixed.

Screening on chemical microarrays [18, 44] – where chemical compounds are
immobilized on a solid support – represents a particularly striking example of
the relative pharmacophoric features. Of course, the similarity of compounds in
this case depends strongly on the site of attachment. Tagged Feature Trees have
been used to describe compound similarities as a function of the mode of im-
mobilization. This approach provided a useful guidance for library design and
screening data analysis in the context of affinity-based screening on chemical
microarrays [45].

4.5
Searching Combinatorial Fragment Spaces with Feature Trees

So far, we have used the Feature Tree descriptor in pairwise comparisons. Most of
the practical applications of molecular similarity can be reduced to the problem of
comparing a pair of molecules. In some applications, however, it is extremely in-
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Fig. 4.10 R-group molecules or instances from a combinator-
ial library: the common anchor point of the instances is
marked with an R. One instance was used as a query in a
similarity search (top molecule). On the left, the two most
similar instances in the library without consideration of the
anchor point are shown. When the anchor point is identified
as a tagged node (circles), the most similar instances in the
library have their anchor point at equivalent positions in the
molecules, as shown on the right.



efficient to do so. For combinatorial libraries, for example, we can search for the
most similar compound by enumerating the library and comparing every library
molecule with the query molecule. The number of library molecules is polynomial
in the number of building blocks used. It would, therefore, be much more effi-
cient to search the library in its closed form, namely on the basis of the building
blocks and the synthesis rules. In the following, we will describe how such simi-
larity searches can be performed with the Feature Tree descriptor.

The search space that we consider is a so-called combinatorial fragment space.
It consists of a set of molecular fragments and rules defining how these frag-
ments can be combined to build molecules. Each fragment contains one or
multiple link atoms of a certain link type. The rules describe which link types
are compatible with each other and which chemical modifications have to be
performed if a pair of fragments are connected via a certain link-type combina-
tion. Combinatorial fragment spaces are a very powerful description. They can
handle molecule libraries (fragments without links) and combinatorial libraries
(every R-group has its own link type) as special cases. In its most general fash-
ion, a combinatorial fragment space describes what can be made synthetically
from a set of educts (fragments) with a fixed set of reactions (rules). A popular
way of creating fragment spaces is the retrosynthetic analysis of a compound
set [46]. Here, the rules are used to break compounds into fragments at chemi-
cally meaningful positions and to add the corresponding linker atoms.

4.5.1
Search Algorithm

Given a query molecule, the question arises of how to find molecules from a
combinatorial fragment space most similar to the query. Obviously, in most
cases an enumeration of the space is prohibitive owing to the enormous num-
ber of compounds which can theoretically be constructed. Therefore, we have to
search on the level of molecular fragments and rules instead. The initial step to
do so is to convert the combinatorial fragment space into the Feature Tree do-
main. Every fragment can be converted into a Feature Tree if we make sure that
link atoms become separate nodes; so-called link-nodes. We can create the Fea-
ture Tree of a molecule of the space without going back to the molecular level:
The link-nodes at the connected fragments are removed and a new edge is
formed between the nodes adjacent to the link-nodes (see Fig. 4.11 for an exam-
ple). After converting the query molecule into a Feature Tree, the remaining
task is to construct a Feature Tree from the Feature Tree fragments of the space
with highest possible similarity to the query.

In order to solve this task, we will again develop a dynamic programming
scheme as in the case of pairwise Feature Tree comparisons. For every directed
cut in the query tree and every link type in the fragment space, we would like
to know the most similar fragment of the space under the assumption that the
link of the fragment is matched to the atom behind the directed cut (see
Fig. 4.12). For all pairs of directed cuts and link types, a list of the most similar
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Fig. 4.11 Chemical fragment spaces consist of molecule frag-
ments with linkers and a set of rules defining how fragments
can be connected. With Feature Trees, the process of building
molecules from a chemistry space can be done directly and
easily on the descriptor level by combining the trees of the
corresponding fragments. In this way, the challenge of search-
ing a chemistry space without enumerating the compounds can
be addressed.

Fig. 4.12 A chemistry space can be searched for the com-
pound most similar to a query with the following dynamic
programming procedure. For every directed edge and every
link type, a list of the most similar fragments is calculated
with the match-search algorithm. When a second link is found
in the fragment, the dynamic programming matrix can be
used in order to find the highest possible similarity value (red
arrow, the part of the query which has to be matched to the
link; blue arrows, the compatible link types; green arrows, pre-
viously calculated similarity values for these edge–link-type
combinations).



fragments is stored in a matrix called the edge-link-similarity matrix. If we as-
sume for a moment that the fragment space contains only fragments with a
single link, then this matrix can be computed by applying the match-search al-
gorithm (without the initial split search) to every pair made up of a directed cut
in the query and a fragment from the space. The final, most similar molecule
can be found by taking every edge of the query tree together with every allowed
combination of link types and combining the similarity results achieved for the
antiparallel directed cuts at this edge.

In the generic case, a fragment might have multiple links. We can still com-
pare a part of the query tree with a fragment of the fragment space using the
match-search algorithm. Now, while the match-search algorithm proceeds, the
following situation might occur. After selecting a match, the algorithm will cut
at a link-node. Subsequently, we have to compare the link-node of type t with a
certain part of the query tree starting with edge e. We cannot perform this com-
parison because the link-node is only a placeholder for a fragment which we
can add via a compatible link-node. At this point, we can make use of the edge-
link-similarity matrix. Let us assume that t� is a link type compatible to t. In the
matrix under position (t�, e), we can find the fragment of the space most similar
to the query tree part starting at bond e and also the corresponding similarity
value for that fragment. The match-search algorithm can, therefore, stop here
and just reuse the results of a previous run. The algorithm can easily be ex-
tended to deal with multiple compatible link types.

Two further phases are necessary to complete the combinatorial fragment
space search algorithm. In a preprocessing phase, the order in which the edge-
link-similarity matrix is computed has to be determined. The order of the link
types (the rows of the matrix) does not play a role. The order of the edges, how-
ever, is of importance. Since we are reusing data from the matrix, it must be en-
sured that the results for small subtrees are computed first. As in the dynamic
match-search algorithm, the computation is started at the terminal nodes and
ordered such that the subtree size increases. In a post-processing phase, the
most similar Feature Trees have to be constructed since the result of the above-
described dynamic programming scheme is only the similarity value. At each
entry of the edge-link-similarity matrix, a list of fragments achieving the highest
similarity values is stored. Based on these lists, a recursive algorithm not de-
scribed here can reconstruct all Feature Trees (and the corresponding com-
pounds) which result in the previously calculated similarity values.

4.5.2
Set-up of Fragment Spaces

A popular way of creating fragment spaces is the retrosynthetic analysis of a
compound set described in the context of Feature Trees in [9]. Here, the rules
are used to break compounds into fragments at chemically meaningful posi-
tions and add the corresponding linker atoms. Fragmentation can be performed
within relevant databases of drug-like chemical compounds such as the WDI,
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CMC or MDDR [47]. An advantage of such starting material is the focus on
drug-like chemical space with given precedence for a real synthesis. An example
of such a space is the WDI-derived chemical space as described in the original
Feature Tree fragment space paper. RECAP [46] – like shredding of the WDI
based on 11 reactions – led to 17 000 unique fragments with an average molecu-
lar weight of 200 Da. The chemically allowed rules for combinations of frag-
ments can be based on the same (retro-)synthetic rules which were used to split
the compounds in the database. However, a bias to existing compounds may
exist and hinder novelty. In addition, fragments defining the virtual hits have to
be “translated” to commercial reagents in order to start synthesis.

Alternatively, available chemical reagents from vendor databases together with
established chemistries can guide the setup of a supply based fragment space
(Fig. 4.13a). In this way, the search space is defined by all compounds that could
be made with all reagents and established chemistries “at hand”. By defining the
likelihood of accessibility of reagents, e.g. in stock or obtainable from a reliable
supplier, versus chemicals that would still need to be ordered, hits can be classified
by availability. Likewise, synthetic ease can be captured by the estimated do-ability
of chemical synthesis, which can further help classify real accessibility of virtual
hits for biological screening experiments. This can be a crucial aspect in discovery
projects where timely supply of interesting compounds is a key factor.

Here we describe in practical terms the necessary steps to set up such a tai-
lored chemical fragment space. The chemistries for fragment assembly are
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Fig. 4.13 (a) Workflow of a Feature Tree frag-
ment space set-up. The underlying fragment
database can be derived from retrosynthetic
analysis (RECAP) of compound databases
(WDI) and/or from a selection of reagents
from vendor databases (ACD). In addition,
chemical rules for allowed fragment combi-

nations need to be defined. (b) The number
and molecular weight distribution of unique
fragments present after the retrosynthetic
analysis of the WDI and the reagents col-
lected from vendor databases. (c) Chemistry
definitions and link types used in the ACD
fragment space.
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based on a list of common chemical reactions used in combinatorial chemistry.
The definition of link-types differs somewhat from that of the initial RECAP-
WDI space. We do not distinguish between amines and ureas, in fact the form-
er can be used to build up the latter simply by including carbonic acid into the
fragment space. Currently, seven functional groups and also seven reaction
types are covered (Fig. 4.13 b). Depending on the query or desired hit properties,
reactions such as ester formation are removed.

The source of reagents was the Available Chemicals Directory [47]. The com-
mercially available building blocks were filtered for desired properties and unde-
sired chemical features in order to direct the chemical space towards drug-like
or lead-like molecules. A list of defined protecting groups was removed and at
least one functional group related to the chemistries defined for linking frag-
ments had to be present in a database compound. It is important to include re-
agents with multiple link types to allow diverse combinations of fragments be-
yond simple two-component products. Duplicate fragments are removed during
the labeling process, e.g. identical fragments descendent from the carboxylic
acid and the acid chloride thereof. In addition, one has to consider the elimina-
tion of redundant fragments that cannot be distinguished by the descriptor,
such as substitution patterns of terminal aromatic ring systems. It can be ad-
vantageous to enrich the collection selectively with small linker-type fragments
and to include small reagents, such as water, ammonia, hydrazine or similar,
into the space, which can take on a kind of “bridging” function between larger
fragments. Spiking with target-based scaffolds not necessarily covered by com-
mercial compounds provides a means additionally to tailor the search space to-
wards more focused libraries. As the definition of chemistries currently does
not handle ring closures, a number of carefully selected heterocycles was also
added to the collection. Overall, the fragment space contains approximately
50 000 fragments with a molecular weight distribution higher than the WDI-de-
rived fragment space (Fig. 4.13 c).

4.5.3
Searching in Fragment Spaces

The Feature Tree fragment spaces screening concept was exemplified for a
number of known actives across different target classes in the paper introducing
the general concept [9]. Starting from a single active compound as the query
structure, the ability of the search method to construct and identify so-called

4.5 Searching Combinatorial Fragment Spaces with Feature Trees 105

�

Fig. 4.14 Search results for three different
targets. Whereas hits close to the query
could be retrieved with a high similarity val-
ue (not shown), at a lower similarity thresh-
old so-called plausible hits were retrieved
which are close to actives for the same tar-

get but chemically distinct from the query.
For each target the query is shown (left) to-
gether with plausible hits in the WDI (mid-
dle top) and ACD fragment space (middle
bottom) and known actives (right).



plausible hits was investigated. The plausibility of hits was judged based on the
structural similarity to either the query or other known actives. In many cases,
the Feature Tree descriptor was able to produce hits that were distinct from the
query but structurally related to other actives from a different chemical series,
hence showing its ability to jump between classes. The targets under investiga-
tion were dopamine D4 antagonists, histamine H1 antagonists, Cox-2 inhibi-
tors, Tyr-kinase inhibitors and angiotensin II antagonists. We have taken the
same examples to investigate the ability to retrieve plausible hits from the frag-
ment space based on commercial reagents as described above. Figure 4.14
shows selected hits from searches within both fragment spaces.

As long as we perform similarity searches in small libraries of up to a few
million compounds, searching for a list of the most similar compounds is a
useful task. When the search space increases, however, two problems occur
which make the redefinition of the similarity search problem necessary. First, in
a very large fragment space, the chance is high that the most similar compound
is nearly identical or even identical with the query compound. In this case, the
similarity search would be useless. It becomes clear that our true aim is not to
find the most similar compound but to find molecules with a certain similarity
value. Only the limited search space and the imperfect search algorithms make
these two problems appear the same in daily practice. To tackle this problem
within the Feature Trees software, a target similarity value can be defined such
that molecules with a selected degree of similarity are created. The influence of
such similarity fine tuning was investigated with a set of 55 dopamine D4 an-
tagonists [9] demonstrating the gradual morphing of compounds to different
topologies as the similarity level decreases. These changes often go hand in
hand with increased molecular complexity of hits and the user needs to judge
carefully the appropriate parameter settings.

The second problem appears when we browse through hit lists resulting from
similarity searches in large spaces. Owing to the size of the space, the com-
pounds in the hit list might be very similar to each other. It is therefore neces-
sary to control the diversity within the hit list. Within Feature Trees, we have
several criteria at hand; for example, the number of common or different frag-
ments between two molecules in the hit list can be limited. Alternatively, Fea-
ture Tree similarity within the hit list can be used to increase diversity.

While the number and nature of compounds can be controlled as described
above, Feature Tree fragment spaces still makes it possible to generate an al-
most unlimited number of similar compounds. In order to benefit from the
vastness of the search space, the user is generally interested in the creation of
as many suggestions as possible without being overwhelmed by the sheer num-
ber of compounds. We found that even with carefully chosen parameter set-
tings, the process of selecting molecules for synthesis and testing from a large
hit list can still be a challenge. One approach to guide this process involves
post-processing by clustering the hits. It is a distinct and desired characteristic
of Feature Tree fragment spaces that compounds with varying topologies are
generated. Therefore, the concept of molecular frameworks [48] can be very use-
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ful to group hits that share a common chemical graph-based topology. Figure
4.15 shows an example with a Cox-2 inhibitor query. The hits belonging to dif-
ferent frameworks are grouped along horizontal lines with the x-axis indicating
the similarity value. The figure shows that Feature Tree fragment spaces indeed
allow exploration of divergent topologies spanning variant ranges of similarity.
Within a molecular framework, assorted decorations or atom-type scaffold varia-
tions can be inspected. It has been observed that the algorithm tends to produce
more complex compounds with decreasing similarity to the query [9]. Therefore,
a representation as in Fig. 4.15 helps concentrate on simpler compounds. Hit
compounds for further investigations can be selected not only by reflecting sim-
ilarity, but also by ensuring that diverse chemical classes are covered by proto-
type representatives.
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Fig. 4.15 Hit list from Feature Tree fragment
space searches are grouped by a molecular
framework analysis (y-axis) and the Feature
Tree similarity score (x-axis). The search al-
gorithm indeed produces compounds from

variant chemical classes. Hits for further
processing are then selected not only based
on the overall top ranked molecules, but the
top-ranked molecules within distinct frame-
works (black squares).



4.6
Multiple Feature Tree Models: Applications in HTS Data Analysis

Owing to the rapid progress in the fields of combinatorial chemistry and paral-
lel synthesis, large sets of diverse structures are available for high-throughput
screening (HTS). The computational analysis of HTS results becomes an impor-
tant task in computer-aided molecular design because of the significant noise
and high failure rates. The identified screening hits are compared with each
other in order to generate a hypothesis about the underlying lead structure.
Similarity-based methods are also used for identifying structural classes around
the detected screening hits in combination with fast clustering or partitioning
algorithms. After such grouping of similar hits, SAR (structure–activity relation-
ships) models can be generated which relate the biological activity to the pres-
ence or absence of substructures or functional groups. These models can be
used to prioritize molecules for further testing.

In the following section, the software tool HTSview is presented. It has been
designed for the extraction of knowledge from HTS data by means of multiple
Feature Tree alignments [15]. The targeted application is the analysis of the pri-
mary screen and on selection of molecules from the test set for the secondary
screen in order to identify suitable lead structures. An interactive graphical user
interface combines the concept of molecular similarity with data mining and vi-
sualization methods and aims at the identification of appropriate chemical se-
ries for optimization. All the methods rely only on similarity comparisons and
measured activity data alone and work without any information on the target
structure. The main idea behind HTSview is a design cycle which combines in-
formation gained from experimental and computer-based methods (see
Fig. 4.16). In each iteration the results of the experiments are analyzed and then
new molecules which should be tested are proposed. We normally start the pro-
cess with several hundred thousand measured activities of a compound library
usually containing yields from several hundred up to a thousand hits. In order
to reduce the data and to extract only relevant information, the so-called activity
region is computed. This includes all highly active and similar yet inactive com-
pounds. Note that HTS data are in general of poor accuracy, containing signifi-
cant systematic and statistical errors. Therefore, we have to deal with many false
positives and false negatives which are likely to be found in the activity regions.

First the pairwise similarity between all considered active molecules in the
HTS collection and all inactive ones are computed. The Feature Tree dynamic
match-search algorithm is chosen for similarity calculations. The most interest-
ing inactives are selected using a similarity cut-off. This usually reduces the
data set to 2000–5000 compounds. For these molecules, an all-by-all similarity
matrix is computed. Standard data mining methods can be applied to this ma-
trix in order to extract relationships between the structural similarity of the mol-
ecules and their measured biological activities. In HTSview, several clustering
algorithms have been integrated which allow grouping of similar molecules.
Similarity cut-offs or kNN-methods such as Jarvis–Patrick clustering [49] are
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very efficient and can deal with huge matrices. Hierarchical clustering algo-
rithms (e.g. single linkage or complete linkage clustering [50]) are better suited
to smaller data sets and can be applied to selections resulting from the kNN
methods. For each cluster showing a good activity profile, a multiple Feature
Tree alignment is computed using the MTree algorithm (cf. Section 4.3.4).

The next step is to correlate biological activity with the structural information
of the topological alignment in order to find the relevant motifs from an HTS
experiment. We call this type of model a biophore model. In this context, we de-
fine a biophore as the fragment-based description of an ensemble of molecules
with similar biological activities and structures, based on the Feature Tree de-
scriptor. Biophore models are generated in a two-step procedure. The first step
is called fragment sampling. A set of similar actives and inactives is aligned with
the MTree of the cluster under consideration. The fragments in each match are
collected in a match list. In the second step, the MTree is used to align all the
molecules of the activity region. The similarity between each molecule from the
activity region and each fragment in the match list is computed and stored in a
compound-property matrix as used in classical QSAR analysis.

Using linear regression or approaches such as PLS, a weight vector can be com-
puted based on the compound-property matrix. Owing to the linear nature of this
analysis, those weights provide information about the importance of each frag-
ment at a certain position in the alignment (i.e. a node in the MTree). Positive
or negative weights in the MTree nodes now indicate fragments that are positively
or negatively correlated with activity, respectively. Favorable fragments have high
positive weights. The resulting model can be applied to search databases effi-
ciently for molecules with related features using the algorithm from Section 4.3.4.
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Fig. 4.16 Main workflow used by HTSview.
First a similarity matrix is computed based on
Feature Tree similarity, Then the Feature Trees
are clustered. For selected clusters MTree
models are constructed. A QSAR matrix is
computed based on the MTree as an align-

ment template. In the next step, the activity-
related weights are extracted by standard re-
gression tools. The resulting biophores can
be used for virtual screening or to redefine
the similarity measure.



In order to validate the alignment and model building procedures, we se-
lected internal and literature data sets representing several protein target fami-
lies [51]. For most datasets, 3D-QSAR models and X-ray structures were avail-
able which allowed a detailed comparison with biophore models. The data sets
encompassed inhibitors for serine proteases (factor Xa), metalloproteinases
(ACE, MMP-8, thermolysin), kinase (CDK-2) and ion channels (GABA-A). For
every data set, significant biophore models were obtained with reasonable or
good predictivity, expressed as leave-one-out cross-validated r2 (q2) values (see
Table 4.1). The predictivity is almost as good as for 3D-QSAR techniques,
although 3D information is not used, suggesting that model building does not
necessarily require 3D structural alignments.

As an application to real HTS data, we applied this method to a proprietary
kinase inhibitor screen. A significant biophore model with a cross-validated r2

value of 0.465 was obtained, which explains the important SAR features and
provides relevant information for follow-up investigation. This particular model
was generated using 57 hits from a purine scaffold, split into actives and inac-
tives with activities in the nanomolar to micromolar range. The biophore model
was generated using the actives only. All compounds, including the inactive
compounds, were aligned on the biophore model. A linear regression analysis
revealed a good correlation between the highly weighted fragments and activity.
Subsequent virtual screening of a large compound collection using this bio-
phore model leads to a significant enrichment of active compounds. Hence we
were able to explain the SAR of various classes sharing comparable features im-
portant for activity for this target.
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Table 4.1 Biophore models for series from different target
families and therapeutic indications. For GABA A and MMP-8
some compounds were excluded since Feature Trees do not
distinguish stereoisomers or aromatic substitution patterns.
Here, the position of substituents had a dramatic effect on
the biological activity

Family Target No. of Biophore model CoMFA model
compounds

Sampling
inactives

Sampling
actives

�2 r2

q2 r2 q2 r2

Serine proteins Factor Xa 138 0.441 0.609 0.393 0.499 0.760 0.913

Metalloproteins ACE 68 0.609 0.778 0.699 0.831 0.630 0.882
ACE (neutral) 68 0.644 0.799 0.647 0.795 0.630 0.882
MMP-8* 81 0.509 0.739 0.354 0.535 0.569 0.905
Thermolysin 61 0.321 0.664 0.312 0.624 0.636 0.941

Kinases CDK-2 86 0.463 0.636 0.499 0.614 0.630 0.860

Ion channel GABA A* 28 0.480 0.780 0.460 0.800 0.745 0.946



4.7
Drawing Similar Compounds in 2D Using Feature Tree Mappings

One of the most interesting properties of the Feature Tree matching algorithms
is that they preserve the topology of the molecules, i.e. the relative arrangement
of fragments within the molecule is considered by the matching algorithms.
For drawing similar molecules in a similar way, the Feature Tree comparisons
are useful as they detect similarity beyond mere substructure identity and they
also provide a mapping that can be viewed as alignments of molecule fragment
pairs.

A first algorithm for similar molecule drawing is given in [52]. Here, embed-
dings into a supertree are used to guide molecule drawings. In the following,
we summarize an alternative algorithm based on Feature Trees that draws struc-
ture diagrams of similar molecules in a similar manner [53].

The basic algorithm for automated drawing of structure diagrams (SDG) goes
back to Zimmerman [54] (see [55] for a review on SDG algorithms). The idea is
to start the drawing with one atom and subsequently add atoms and bonds to
the drawing such that the drawing is always connected and free of overlaps. A
variant is to split molecules into parts called drawing units and then to proceed
analogously. Such a procedure has several degrees of freedom for placing the
atoms (or units) on the drawing plane. The main challenges are to exploit these
degrees of freedom in order to achieve non-overlapping diagrams and the draw-
ing of complex ring systems. Our algorithm tries to place atoms according to
the current standards in chemistry (see, e.g., [56]), for example by drawing
bonds according to specific angle patterns. In the following, the set of rules
used is referred to as drawing rules.

Given two similar compounds, the matching created during the Feature Tree
comparison can be used for laying out the two SDGs similarly. In order to de-
rive directional constraints from a Feature Tree matching, bond paths both be-
tween matches and within matched subtrees and the relative arrangement of
rings in ring systems are considered.

The algorithm used to employ this information is based on the concept of
“drawing under user-defined constraints”: each bond of the molecule can be an-
notated with a direction (north, north-east, east, etc.) describing the orientation
of the drawing unit containing the bond. The algorithm (for details, see [53])
searches for a structure diagram fulfilling these directional constraints. The
overall method for drawing a set of similar molecules is as follows. First, one of
the molecules – the “template” – is drawn using the unconstrained drawing al-
gorithm. If the molecule set does not imply a template molecule, it is recom-
mended to select the molecule with the largest number of rotatable bonds. The
other molecules are drawn subsequentially. Bond paths are extracted from the
Feature Tree matching between the template and the currently drawn molecule.
The directions for the extracted bond paths in the current molecule are taken
from the template and used as directional constraints for the drawing algo-
rithm.
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In Fig. 4.17, a set of benzodiazepines is shown that were aligned using Fea-
ture Tree matchings. The bond orientations extracted from the template are
shown by arrows. The algorithm has been shown to be very useful to visualize
similarities beyond common subgraphs. Further test cases can be found in [53].

4 Feature Trees: Theory and Applications from Large-scale Virtual Screening to Data Analysis112

Fig. 4.17 Benzodiazepines aligned using Feature Tree match-
ings. The bond orientations extracted from the template com-
pound (row 3, column 3) are shown by arrows.



4.8
Conclusion

Owing to the relevance of similarity-based techniques in molecular design, de-
scriptor technologies have been under investigation for decades, resulting in
hundreds of ways to represent molecular structure. Obviously, the question of
which is the right descriptor cannot be answered in general, but generally de-
pends on the specific application. The Feature Tree approach differs from most
other descriptors in structure. The node-labeled tree structure is more closely re-
lated to the molecule than linear structures; it implies, however, more complex
comparison algorithms. The descriptor combines conformation independence
with alignment dependence, which makes it somehow unique. Alignment de-
pendence is often seen as a disadvantage owing to the more time-consuming
comparison and the potential bias resulting from heuristic alignment schemes.
Both arguments do not hold in the case of Feature Trees, since the optimal
alignment can be computed within milliseconds by employing dynamic pro-
gramming techniques. Also, the alignment of structures allows for local com-
parison of molecular properties instead of a global comparison only. This yields
not only a higher degree of accuracy, but also facilitates a variety of applications,
several of which were reviewed in this chapter. The alignment dependence typi-
cally improves enrichment rates in ligand-based virtual screening. In HTS data
analysis, a bridge between similarity-based and QSAR-based approaches can be
built. For the analysis of fragment spaces, the local character of the Feature Tree
comparison allows for a full, non-heuristic search. To our knowledge, compre-
hensive fragment space searching is a unique characteristic of Feature Trees. Fi-
nally, the alignment information can be used to draw compounds in such a way
that similarity is expressed in their structure diagrams. Numerous other applica-
tions come to mind for which local, alignment-based comparison is advanta-
geous such as combinatorial library design, library comparison or clustering of
compounds. The further development of Feature Trees will therefore be an ac-
tive field of research.
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Klaus-Jürgen Schleifer

5.1
Introduction

Successful computational approaches in drug design are mostly based on ex-
perimentally determined protein structures of a molecular target or a multitude
of chemical ligands with known pharmacological (in vitro) effects at the same
receptor site. Whereas the so-called structure-based drug design uses the binding
pocket of a protein as the lock in order to construct the best-fitting key (e.g.
LUDI [1]), ligand-based drug design tries to extract key functions out of a ligand-
based pharmacophore model for the prediction of biological effects of structural
congeners (e.g. CoMFA [2] and CoMSIA [3]).

Starting in the late 1980s, a combination of these techniques was introduced
and referred to as minireceptor or pseudoreceptor modeling [4–8]. A broader distri-
bution concomitant with an increased number of publications was achieved by
the commercially available pseudoreceptor modeling software package Yak (for
technical details, see [9, 10]). The new concept allowed the construction of a
three-dimensional peptidic pseudoreceptor around any single small molecule or
molecular ensemble of interest (e.g. a set of superimposed ligand molecules).
As a result, guided by permanent correlation of experimental and model-derived
calculated free energies of binding, a host–guest-system is created, mimicking
reasonably well the interaction pattern of a real binding site. At the same time,
pseudoreceptors were constructed applying classical molecular dynamics simu-
lations and force field minimizations [11, 12].

This chapter does not cover these classical approaches but rather focuses on
basic principles, evolution and scientific applications based on specialized pseu-
doreceptor modeling software packages.
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5.2
Methodology

In order to build up an atomistic pseudoreceptor model, the following basic
steps have to be carried out:
� selection of a set of ligand molecules with known affinity (Kd) or activity (IC50

or EC50) to the same receptor site
� generation of the bioactive 3D conformation for each of these ligands
� superposition of all ligands (i.e. pharmacophore construction)
� generation of vectors associated with directional interactions (i.e. H-bond ex-

tension vectors, lone-pair vectors and hydrophobicity vectors)
� vector-cluster analysis in order to characterize essential functional groups (an-

chor points) for receptor binding
� selection of appropriate binding partners for all free anchor points (e.g. amino

acid residues or metal ions)
� successive retrieval of residue templates from database to saturate all vectors,

docking, orientation and optimization of the ligand–pseudoreceptor complex.

Automation of these steps was accomplished by the pseudoreceptor modeling
programs Yak [9, 10] and PrGen [13]. In order not to limit the use of only organ-
ic molecules (i.e. ligands and amino acid residues), the Yeti force field [14, 15]
was implemented. This force field considers – in addition to organic residues –
explicitly metal ions (e.g. ZnII, CaII and MgII) that might be essential for the
generation of metalloproteinic pseudoreceptors.

Generation of the ligand-specific interaction vectors is a fundamental basis
for the ongoing saturation with amino acid residues. These may be chosen indi-
vidually from a given database and placed according to the Ponder–Richards
side-chain rotamer library [16]. Characterization of the vectors is simplified via a
color-coded visualization of so-called hydrogen-extension vectors (HEVs; i.e. H-
bond donors), lone-pair vectors (LPVs; i.e. H-bond acceptors) and hydrophobicity
vectors (HPVs) (see Fig. 5.1). In the case that all molecules of interest direct
equal vectors in a common direction, the tips of these vectors are ideal starting
points for the placement of amino acid residues (e.g. LPV is saturated with the
alcoholic hydroxyl group of a serine or threonine).

If individually positioned residues are in close contact, the program evaluates
the possibility of peptide-bond formation and thus links single residues to a
peptide. Furthermore, ligand-independent extension (i.e. residues without direct
contact to vectors) of the pseudoreceptor can be used in order to complete the
peptidic receptor site (e.g. entirely closed shell around the ligand molecules).

Subsequently, a receptor minimization is carried out by energy minimization of
all residues keeping the position, orientation and conformation of the ligands un-
altered. To achieve a high correlation between experimentally derived and calcu-
lated binding energies (�G�exp vs �G�calc), correlation coupling may be used. This ad-
ditional quantity in the energy term couples the actual root mean square deviation
of �G�calc and �G�exp to the force field energy of the system. By a straightforward
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minimization of this term in the course of correlation-coupled receptor minimiza-
tion, an almost perfect correlation may be enforced. In the next step, the pharma-
cophore is allowed to relax by minimizing the ligands without constraints while the
receptor remains fixed (ligand relaxation). In order to allow a more exhaustive search
for the global minimum of the ligands, a Monte Carlo procedure may be chosen.

Internal ligand relaxation allows the removal of strain possibly imposed on
the ligands by the receptor during correlation-coupled refinement but usually
yields suboptimal models. Therefore, correlation-coupled receptor minimization
followed by unconstrained ligand relaxation is repeated several times until a
highly correlated pseudoreceptor model is obtained in the relaxed state (desig-
nated ligand equilibration).

To validate the equilibrated receptor, its potency to predict free energies of
binding (�G�pred) is examined. Therefore, classical QSAR methods such as cross-
validation via leave-X%-out analyses and/or prediction of activity for an external
set of compounds (test set) are accomplished. Since all QSAR models are typi-
cally constructed to predict properties of new or even virtual molecules, model
validation with an external test set reflects reality best (unbiased or biased ran-
dom selection of training set and test set ligands is supported by the software).

The test set ligands have to be placed equally to the training set molecules into
the pseudoreceptor and are minimized applying the same refinement protocol as
described for the training set ligands. Finally, linear regression obtained for the
training set is used to estimate free energies of binding for the test set derivatives
(see Fig. 5.2).
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Fig. 5.1 Superimposed set of ligands with indicated hydrogen-
extension vectors (HEVs; blue), lone-pair vectors (LPVs; red)
and hydrophobicity vectors (HPVs; green).
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Fig. 5.2 Flowchart of a typical PrGen pseudoreceptor model
construction and validation approach.
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Free energy of ligand binding is derived as follows:

Ebinding � Eligand-receptor � T�Sbinding � �Gsolvation�ligand � �Einternal�ligand �1�

In general, this equation is a combination of the approach of Blaney et al. [17]
with the method of Still et al. [18] for estimating ligand solvation energies and a
term to correct for the loss of entropy upon receptor binding following Searle
and Williams [19]. The term Eligand–receptor corresponds to the enthalpic contribu-
tion of the ligand–receptor interaction and is determined using the directional
Yeti force field [14, 15]. The term �Gsolvation,ligand corresponds to the energy re-
quired to strip the solvent molecules off the ligands when binding from an
aqueous environment to a hydrophobic receptor cavity. �Gsolvation is calculated
using the algorithm of Still et al. [18]. T�Sbinding is estimated by assigning the
amount of 0.7 kcal mol–1 to every freely rotatable single bond, excluding termi-
nal methyl groups. The term �Einternal,ligand accounts for the potential increase
in the ligand internal energy – relative to a strain-free reference conformation
in aqueous solution – while bound to the receptor surrogate.

Free energy of binding is calculated according to the Gibbs–Helmholtz equa-
tion by conversion of experimental dissociation constants (Kd) at e.g. 25 �C:

�G�exp � RT ln Kd � 1�364 �kcal mol�1� � log Kd �2�

Parallel to atomistic pseudoreceptors, a second strategy was embarked yielding
quasi-atomistic receptor models by use of the program Quasar [20]. Instead of a
shell of amino acid residues, a three-dimensional binding site surrogate, repre-
sented by a 3D (dot) surface surrounding a series of ligands at the van der
Waals distance is generated. Each of these dots (called virtual particle) bears re-
levant atomistic properties (i.e. H-bond donor, H-bond acceptor, H-bond flip-flop
particles, salt bridges, neutral and charged hydrophobic particles, virtual solvent
and void space) that are visualized color-coded (Fig. 5.3).

Quasar not only considers one conformer per molecule but also represents
each molecule by an ensemble of conformers in different orientations and pro-
tonation states (called fourth dimension [21]), thereby reducing the bias asso-
ciated with the choice of the bioactive conformation. The fifth dimension refers
to the possibility to consider an ensemble of different induced-fit models [22]
and the sixth dimension allows for the simulation of local induced H-bond flip-
flop and various solvation effects [23].

The multiple-conformation or multiple-orientation consideration of Quasar is
taking into account an additional term (�Eenv.adapt.,lig) in Eq. (1) for the energy
uptake on modifying the average receptor envelope to the individual receptor
envelope:

Ebinding � Eligand-receptor � T�Sbinding � �Gsolvation�ligand � �Einternal�ligand

� �Eenv�adapt��ligand �3�

5.2 Methodology 121



5 Concept and Applications of Pseudoreceptors122

Fig. 5.3 Surface (left) and dot representation (right) of Quasar.
Color-code indicates specific interaction sites projected to the
van der Waals surface of a sulfonamide ligand, e.g. H-bond
donor (green) and H-bond acceptor (yellow).

Fig. 5.4 Dual-shell representation of the
receptor surrogate by Raptor [24]. During the
steric adaptation process, the fields
generated by the protein binding site on to
the ligand’s solvent accessible surface (SAS,
gray surface) are computed by linear inter-
polation between inner and outer shell, if

the ligand’s SAS lies between those two
shells (dashed arrows). For surface points
located inside the inner layer, the latter may
adapt only in part to the ligand topology
(solid arrows; the dotted line represents the
topologically adapted receptor surface).



To allow for ligand-dependent induced fit in receptor modeling, the software
Raptor [24] uses a dual-shell representation of the binding site. The inner shell
is yielded by optimizing the most potent compounds of the training set and rep-
resents the most favorable region of binding. Another compound featuring ad-
ditional sterically demanding groups may experience different fields as a conse-
quence of induced fit. Therefore, Raptor generates a second, outer layer, yielded
by fields for altered binding behavior of compounds (Fig. 5.4).

5.3
Application of Pseudoreceptors

The pseudoreceptor modeling concept was utilized for (i) reconstruction of ex-
perimentally determined receptor sites, (ii) exploration of crucial ligand–receptor
interaction sites and (iii) prediction of pharmacological activities of molecules,
sometimes compared with results derived from other 3D-QSAR techniques.

One early study attempted to reconstruct the active site of the enzyme human
carbonic anhydrase I (pdb code 2CAB) based on the structures of four potent
sulfonamide inhibitors [9]. The central zinc ion and eight relevant amino acid
residues for saturation of the vectors were extracted from the X-ray structure
and placed around the four ligands. The final pseudoreceptor model derived
from Yak was compared with the experimentally determined binding pocket ge-
ometry of the crystal structure. Superposition of both receptors indicates the zinc
ion and the chelating histidine residues at almost identical sites (Fig. 5.5a).
Only the imidazole rings of two histidines are rotated. Most deviation is ob-
served in the lower part of the binding site. In order to keep the putative bind-
ing geometry, the native glutamine (Gln) had to be replaced by a short-chain as-
paragine (Asn) in the pseudoreceptor. Thereby, essential interactions with the li-
gands (H-bond via the side-chain amide group) and the peptide link to the
neighboring phenylalanine were enabled. Leu 131 is shifted closer to the li-
gands in order to increase the direct contact area.

Thr 199 and Leu 198 of the pseudoreceptor model are slightly shifted from
their original positions. Nevertheless, two crucial H-bond interactions with the
ligands have been conserved. It is interesting that occupation of the binding
pocket with a sulfonamide ligand (pdb code 1AZM) does not dramatically
change its topology. However, in analogy with the pseudoreceptor model, espe-
cially Leu 198 and Thr 199 are shifted away from the ligand (Fig. 5.5b).

Although the orientations and calculated free binding energies of the sulfona-
mide ligands are not presented in the original paper, reconstruction of the receptor
site via a pseudoreceptor approach was promising and stimulated further activities.

Sippl et al. [25] developed a binding site model for histamine H3-receptor ago-
nists based on a set of 16 histamine congeners with measured log(1/EC50) val-
ues between 3.7 and 9.12 (i.e. �G� from –5.2 to –12.9 kcal mol–1 at 37 �C).

The pseudoreceptor model was constructed with six amino acid residues. The
imidazole ring of the ligands and the terminal basic function were saturated via
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H-bond interactions (Tyr and Asn) and a charged aspartate (Asp). In addition,
three suitable hydrophobic residues were chosen (Phe, Ile and Leu) to build up
a hydrophobic cleft for the molecules. The correlation yielded for 12 training set
molecules (r2 = 0.98, r.m.s.d.= 0.21 kcal mol–1) and four test set molecules
(r.m.s.d.= 0.66 kcal mol–1) indicates the high quality of the model. The topology
of this virtual pseudoreceptor model was checked by means of X-ray crystallo-
graphically determined histamine complexes and interaction pattern derived
from the program GRID [26] (Molecular Discovery, Oxford, UK). In this regard,
two l-histidine-binding proteins of Escherichia coli (pdb code 1HSL) and Salmo-
nella typhimurium (pdb code 1HBP) were investigated with respect to their imi-
dazole ring complementarity. This conserved region bears a tyrosine and a leu-
cine residue parallel to the aromatic imidazole, thus being in good agreement
with the pseudoreceptor‘s phenylalanine and isoleucine (Fig. 5.6).

The probe-based algorithm GRID indicates three favorable common binding re-
gions for an aliphatic hydroxyl group. The pseudoreceptor model occupies these
regions with hydroxy (Tyr), carbonyl (Asn) and carboxylate functions (Asp) in or-
der to saturate hydrophilic features (NH or =N) of the agonists (Fig. 5.6). Further-
more, the hydrophobic amino acid residues (Phe, Ile and Leu) are also located in
the center of the grids generated with a hydrophobic methyl probe (not shown).

Schmetzer et al. [27] performed a joint CoMFA and Yak study for 31 cannabi-
noids acting on the CB1 receptor. Starting from a ligand-based pharmacophore
model, a classical CoMFA investigation was accomplished yielding a correlation
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Fig. 5.5 (a) Binding site of human carbonic
anhydrase I (pdb code 2CAB) with a bound
zinc ion (sphere). Arrows indicate the direc-
tions of the pseudoreceptor model to rotate
and shift amino acid residues. (b) Super-

position of the empty (lines) and the sulfo-
namide occupied binding site (sticks, pdb
code 1AZM) indicating the obvious shift of
Leu 198 and Thr 199.



of r2 = 0.977 (five principal components) and a leave-one-out cross-validation of
r2
cv = 0.630 (spred = 0.792). Subsequently, the same ligands were applied for a Yak-

directed pseudoreceptor alignment in order to yield a pseudoreceptor-based
pharmacophore model for the ligands. To compare both strategies, again CoM-
FA was accomplished for statistical analysis. It is interesting that in spite of a
lack of an experimental 3D structure of the real binding site, the robustness of
the new pseudoreceptor-derived pharmacophore model is significantly increased
(Table 5.1).

This is inferred from better correlations (r2 and r2
cv values) and increased sen-

sitivity associated with a reduction of principal components (PCs). Hence the r2
cv

value yielded for the pharmacophore alignment (PA) drops from 0.63 (five PCs)
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Fig. 5.6 Part of the pseudoreceptor model
for histamine H3-receptor antagonists [25]
(one leucine beside the isoleucine residue is
omitted for clarity). Hydrogen bonds from
ligands to complementary functions of
asparagine (Asn), tyrosine (Tyr) and
aspartate (Asp) are located in the GRID-

derived interaction space [26]. The model’s
phenylalanine and isoleucine residues
parallel to the imidazole rings are positioned
almost identically to detected residues
(Tyr and Leu; black) of known histidine
binding sites.

Table 5.1 CoMFA statistics a) for 29 cannabinoids based on a
pharmacophore (PA) and a pseudoreceptor (PrA) alignment

r2 sest r2
cv spred �Gext.set PC

PA 0.977 0.197 0.630 0.792 0.39/–0.13 5
PrA 0.985 0.161 0.788 0.603 0.70/–0.56 5

a) Standard error of estimate (sest); leave-one-out cross-validated
squared correlation (r2

cv); standard error of prediction (spred);
�Gcalc–�Gexp in kcal mol–1 for two external test set deriva-
tives (�Gext.set); principal components (PC).



to 0.54 (three PCs) while the pseudoreceptor-based alignment (PrA) with three
PCs remains robust (r2

cv = 0.64).
The predictive powers of the two models are almost identical although, at first

glance, deviation from experimental values is smaller making use of the classi-
cal pharmacophore–CoMFA approach [e.g. ��G�= 0.39 (PA) vs 0.70 kcal mol–1

(PrA)]. On closer inspection, one has to take into account that the pseudorecep-
tor-derived model shows a stronger internal correlation (higher r2 and r2

cv values)
and therefore the differences in the prediction are statistically not relevant.

In a reversed type of approach, we used the pseudoreceptor modeling concept
not to develop a tool for SAR predictions but to characterize two discrete ion
channel modes on a molecular level [28]. For this purpose, a set of 13 well-char-
acterized 1,4-dihydropyridine (DHP) derivatives with experimentally determined
dissociation constants (Kd) for the voltage-gated calcium channel (VGCC) in the
resting state (rs) and the open/inactivated state (is) were investigated (Table 5.2).
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Table 5.2 Investigated DHP antagonists and agonists with
corresponding experimentally determined (�G�exp) free
energies of binding (kcal mol–1) in the resting state (rs)
and the inactivated state (is) of VGCCs. Compounds X–XIII
represent test set derivatives. Solvation energies of the
ligands (�Gsolv) are indicated in kcal mol–1

Derivative R1 R2 R3 �G�exp rs �G�calc is Gsolv

I COOCH3 2�-NO2 COOCH3 –10.502 –13.184 –14.198
II COOCH3 3�-CN COOCH3 –9.708 –12.108 –10.743
III COOCH3 4�-Cl COOCH3 –8.209 –8.964 –9.201
IV NO2 2�-OCF2H COOCH3 –9.571 –10.474 –14.696
V COOCH3 2�-OCF2H NO2 –9.264 –10.564 –14.543
VI NO2 2�-CF3 H –6.967 –7.634 –10.313
VII H 2�-CF3 NO2 –7.364 –7.741 –10.330
VIII NO2 2�-CF3 NO2 –8.256 –9.110 –17.275
IX NO2 2�-OCF2H NO2 –7.817 –8.660 –16.994
X NO2 2�-CF3 COOCH3 –9.704 –10.641 –14.150
XI COOCH3 2�-CF3 NO2 –8.803 –10.296 –13.929
XII NO2 2�-OCF2H H –7.860 –8.277 –10.096
XIII H 2�-OCF2H NO2 –7.422 –7.783 –11.269



For the construction of the receptor envelope, only experimentally detected re-
sidues crucial for high-affinity binding or related (mainly smaller or more re-
stricted) amino acids with identical functional features were considered.

Structural comparison of pure enantiomers demonstrated the importance of
the right-hand side of DHPs for high-affinity binding in the resting state of the
channel. Therefore, a threonine, which has been experimentally proven to be
crucial for binding (Thr 1066), was placed as hydrogen-bond donor at this side
of the pharmacophore. The NH function of the DHP ring was saturated by the
carbonyl oxygen of the glycine backbone that imitates a crucial glutamine amide
function (Gln 1070). A methionine (Met 1188 or Met 1491) was located axially
beside and a phenylalanine on top of the substituted 4-phenyl ring. Two addi-
tional tyrosines (Tyr 1490) were arranged below the DHP ring and parallel to
the 2�- and 3�-substituted phenyl ring, respectively. Correlation-coupled receptor
minimization followed by free ligand relaxation obtained a satisfactory correla-
tion of R = 0.99 (r.m.s.d.= 0.097 kcal mol–1) between experiment and calculation.
To resolve the problem of multiple local minima in conformational space, a
Monte Carlo search was performed to find the best adjustment of the ligands
within the binding cavity.

Free energies of binding were successfully predicted for four test set ligands
(r.m.s.d.= 0.532 kcal mol–1) using the linear regression obtained with the train-
ing set. It should be mentioned, that two further test ligands could not be pre-
dicted accurately because of an additional charge-transfer interaction, which is
not considered by classical force fields. The author reasonably explained this be-
havior by use of quantum mechanical calculations [28, 29].

With 19 additional nifedipine analogs, a second model was constructed sup-
porting the above-mentioned receptor hypothesis of the resting state model
(r.m.s.d.= 0.409 kcal mol–1 for the test set derivatives).

Selectivity of the resting state pseudoreceptor model was checked with the
same ligands via prediction of their binding behavior to the inactivated channel
mode.

In spite of a good correlation (r.m.s.d.= 0.115 kcal mol–1) for the training set,
prediction for the relevant test set molecules demonstrated the lack of any pre-
dictivity (r.m.s.d. value 2.033 vs 0.532 kcal mol–1).

For the construction of a pseudoreceptor model of the open/inactivated state,
ligand-derived information was considered indicating the left-hand side of
DHPs to be essential for binding [28].

Based on these observations, a second hydrogen-bond donor (e.g. Lys+, Arg+,
Ser, Gln, etc.) was placed at the left side to simulate the open/inactivated channel
mode. A threonine proved to be best yielding perfect correlation for the training
set (r.m.s.d.= 0.123 kcal mol–1) and convincing prediction (r.m.s.d.= 0.848 kcal
mol–1) for the test set derivatives (Fig. 5.7 b).

Since all pseudoreceptor models are composed of the same six amino acid
residues – Thr, Phe, Gly, Met, Tyr, Tyr – transition from resting to open/inacti-
vated state could be described by one additional hydrogen-bond donor interac-
tion (Thr) at the left-hand side of DHPs.
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Vedani et al. [30] used a 5D-QSAR Quasar approach in order to deduce novel
ligands for the chemokine receptor-3 (CCR3). In this study, two receptor surrogates
were built based on a total of 141 compounds comprising N-(alkyl)benzylpiperi-
dines (series-1) and ureidoalkylpiperazines, aminoalkylpiperazines and amidoalk-
ylpiperazines (series-2). In the simulations, these compounds were represented by
a total of 421 conformers (4D-QSAR) while simultaneously exploring six different
induced-fit scenarios (5D-QSAR): a linear induced fit scaled to 75%, four field-
based modes (steric, electrostatic, H-bond, lipophilicity) and a protocol based on
energy minimization. The receptor surface was constructed via the van der Waals
surface generated starting from all conformers of the ligands defining the training
set. Subsequently, domains or discrete points on the receptor surface were ran-
domly populated with atomistic properties and optimized by simulating crossover
events applying a genetic algorithm. For series-1 (40 training set and 10 test set
compounds) and series-2 (66 training set and 25 test set derivatives) acceptable
leave-8/11-out cross-validated r2 values (0.95/0.86) and a predictive r2 value of
0.879/0.798 for the test molecules, respectively, were obtained. Subsequently, both
series were combined (the authors commented that the reason for not envisioning
this first hand was of a technical nature) and a common receptor surrogate was
generated. To match the volume of series-1, one torsional angle of the series-2 li-
gands had to be altered from gauche (–60�) to trans (180�) conformation. After 8000
crossovers (32 generations), the simulation reached the cross-validated r2 of 0.907
(r.m.s.d.= 0.4 kcal mol–1) and a predictive r2 of 0.899 (r.m.s.d.= 0.34 kcal mol–1).
These quantities reflect values averaged over 250 models that, among themselves,
differ in 27% of the mapped 138 properties on 342 available positions of the surface.

Based on these models and a functional-group analysis, 58 novel compounds
with (i) lipophilic substituents (e.g. CH3, Cl, CN) to increase hydrophobic inter-
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Fig. 5.7 Pseudoreceptor model of the L-type
VGCC in the resting state (a) and the
opened/inactivated channel mode (b) with
one additional threonine (Thr) at the left

side of DHPs. Training set (black) and test
set structures (gray) are stabilized via three
H-bonds (dashed lines). For clarity only NH
and OH hydrogens are displayed.



actions and simultaneously reduce desolvation energy or (ii) amphiphilic H-
bond accepting moieties (e.g. acetate, pyridine, isocoumarin) aimed at strength-
ening hydrogen-bond interactions were screened in silico.

For series-1, 10 novel ligand molecules with calculated IC50 values from 0.3 to
16 nM were tested. For series-2, the 48 tested molecules yielded calculated Ki

values from 21 nM to 2.5 �M. In both series, an isocoumarin ring combining
H-bond-acceptor features with a delocalized, polarizable ring system yields best
results (Fig. 5.8).

Unfortunately, the proposed novel structures have not been synthesized or
tested so far. The fact that 11 of the proposed ligands show calculated binding
affinities higher than any compound of the training set should initiate experi-
mental inspection.

5.4
Conclusion

Pseudoreceptor models were originally constructed to yield an atomistic picture
of hitherto unsolved receptor sites. By means of a specialized force field, this
binding pocket was subsequently applied to derive 3D-QSAR studies (Yak and
PrGen). Unrealistic consideration of one common binding site for a set of sev-
eral tightly bound ligands yielded non-atomistic models (i.e. Quasar and Raptor)
implicitly accounting for different binding poses of the ligands, “breathing”
binding pockets and altered H-bond interaction patterns.

Use of these programs is documented in a multitude of publications trying to
predict biological activity of compounds modulating the human carbonic anhy-
drase [9, 10], G protein-coupled receptors (GPCRs) [10, 13, 25, 27, 30, 31], vari-
cella-zoster virus and human thymidine kinases [32], cytochrome P-450-depen-
dent lanosterol 14�-demethylase (P45014DM) [33], a sweet taste receptor [34], �-
tubulin [35], ion channels [28, 36, 37] and others.
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Fig. 5.8 CCR3 antagonists with predicted IC50 values
(IC50 pred) derived from Quasar models for series-1 (left) and
series-2 [30].



It will be interesting to follow whether pseudoreceptors up to the sixth di-
mension (6D-QSAR [23]) represent the final state or just a breakpoint to further
evolutions (e.g. 7D-QSAR).
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Gerhard Wolber and Robert Kosara

6.1
Introduction

Amongst others, the concept of describing pharmacon–drug interactions via
pharmacophore models consisting of relevant chemical features has become a
well-accepted technique, which is very appropriate for use in high-throughput
virtual screening [1, 2]. There are two ways of modeling drug–target interac-
tions: either by starting from a set of ligands that are known to bind to the
same target in a comparable way (ligand-based drug design) or by investigating
the geometry of the target and the bound ligand if its structure is available
(structure-based drug design). While several pharmacophore approaches exist
for ligand-based design [3], structure-based design is often still performed using
docking algorithms. This chapter will introduce LigandScout, a program for
structure-based pharmacophore modeling.

6.1.1
Structure-based Drug Design Methods

If the 3D coordinates of the target receptor obtained from X-ray or NMR struc-
ture analysis are known, the most obvious way of deriving a model for drug–re-
ceptor interaction is to investigate a molecule’s complementarity with the target
binding site. A commonly used structure-based drug design approach is dock-
ing small molecules into the binding site assuming the binding site to be rigid
and the ligand to be flexible. There are several docking tools available: Rarey et
al. developed a tool called FlexX [4–6] that is able to find the bio-active confor-
mation of many known complexes without manual interaction. DOCK, devel-
oped by Oshiro and Kuntz [7], uses several scoring functions to evaluate confor-
mational space and the steric interaction of the ligand with the protein. AUTO-
DOCK, a docking tool developed by Morris et al. [8], uses a rapid grid-based
method of energy evaluation operating on the AMBER [9] force field. A third
tool named GOLD, developed by Jones et al. [10, 11], is based on a genetic algo-
rithm and supports partial protein flexibility.
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A slightly different approach was presented in the computer program LUDI
by Böhm [12]. It searches for interaction centers in the protein and assembles
potential new ligands by combining fragments from a three-dimensional struc-
ture library. The scoring function for selecting the fragments depends not only
on chemical features, but also on the number of rotatable bonds available in the
yet to be assembled ligand molecule. Structure-based design becomes even
more interesting when the increasing number of known target structures is
considered. Since high-throughput in silico screening of combinatorial libraries
has become relevant, docking tools have been used for that purpose. However,
the re-investigation of the binding site for each docked ligand is computation-
ally inefficient compared to the mapping of a ligand to a pre-elucidated pharma-
cophore describing the binding site.

6.1.2
Why Structure-based Pharmacophores?

When describing target–ligand interactions, it is essential that the hypothetical
model is (i) selective enough to filter active compounds from inactive ones and
that it is (ii) general enough to find new ligands that were not known at the
time of model creation. The model definition should be so general that it can
be applied across several classes of compounds and still reflect the desired
mode of action. It should (iii) be possible to match automatically large com-
pound libraries in a batch process in reasonably short time. We describe here
our approach to design models fulfilling these requirements by implementing a
simple and robust pharmacophore definition that is transparent to the user and
is capable of being adapted once additional information on a specific ligand–tar-
get interaction becomes available.

In order to prove its general applicability, pharmacophores were derived from
the biggest repository of publicly available protein–ligand complexes: the Protein
Data Bank (PDB) [13]. Work with the PDB brings up some problems resulting
from historical growth. Whereas recently submitted complexes may conform to
a high-quality standard, structures submitted decades ago may show severe geo-
metric problems and even missing atoms and bonds [14]. We present an ad-
vanced preprocessing procedure that incorporates already published techniques
[14–16] for cleaning up this information, which is a prerequisite for chemical
investigation and ultimately automatic pharmacophore generation.

6.2
The Data Source: Clean-up and Interpretation of PDB Ligand Molecules

Data formats in the Brookhaven Protein Databank have become an intensively
discussed topic in the last few years. The original PDB file format [17] was cre-
ated in the late 1970s and maintained by the Research Collaboratory for Struc-
tural Bioinformatics [13]. In order to improve the organization of bibliographic
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information and meta data, the mmCif format [18], which is a subset of the
STAR (Self-defining Text Archive and Retrieval) format [19], was created in 1990
and has been continuously modified since then. mmCif is based on a defined
set of data items, described in a dictionary description language (DDL), and en-
ables potential software to more easily parse and validate content and meta data.
Bernstein et al. created a tool for converting PDB to mmCif [20], which has to
fight inconsistencies and ambiguities in the historically grown file format. In or-
der to address these problems, the PDB Data Uniformity Project was initiated
to improve data quality by correcting obvious errors [21]. In the past few years,
XML technologies [22, 23] have become a general standard for storing and con-
verting all kinds of data and technically more robust solutions than mmCif
based on XML, such as PROXIML [24], were proposed but still not accepted by
the Research Collaboratory for Structural Bioinformatics.

Our tool LigandScout deals with data mining in protein complexes that have
been continuously submitted for over 30 years. The file format used was mainly
created to describe proteins, never focusing on ligands or their detailed descrip-
tion. In order to yield the best results from data gathering, a potential interpre-
tation algorithm needs to eliminate any possible means of data tampering
caused by automated conversion. This is the reason why this work has to per-
form interpretation starting from the slightly outdated original PDB file format,
which was used to submit the largest part of all ligands complexed in proteins.

The first part of this section describes how this interpretation is done and
which assumptions have been made to retrieve plausible results. The second
part will then describe the algorithms used to compute bond characteristics
from geometric information, because the PDB file format and its successors in-
clude no means to specify hybridization states or bond orders, which are essen-
tial for the characterization of properties of small organic ligands. Ligand bond
characteristics interpretation is a prerequisite for the step to follow: the detailed
description of protein–ligand interactions by pharmacophore models.

6.2.1
Topological Analysis

A first step in the interpretation of the ligands is the analysis of topological in-
formation (typically referred to as “2D information”) contained in the molecular
graph leaving the positions of the atoms disregarded. These calculations regu-
larly can be performed at a much lower computational cost than a three-dimen-
sional analysis. Brown and Martin [25] even concluded that 2D descriptors gen-
erally contain the same information as geometric descriptors.

In the case of PDB ligands, only part of the graph information is defined in
the PDB file format sepcification: bond types and atom hybridization states are
missing and will later be derived from the three-dimensional arrangement of
connected atoms. Connectivity information, however, is already present and can
be used to seperate cyclic from non-cyclic molecule parts. Especially for planar
rings, this separation is a prerequisite for geometry interpretation, because of
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their different geometry characteristics: neighboring bonds to an sp3 atom have
a default tetrahedral bond angle of 109.5�, which can be distinguished from an
sp2 atom with a default bond angle of 120�. A planar aromatic five-membered
ring has a typical angle of 108�, even though it contains sp2 hybridized atoms.

From a graph-theoretical point of view, the recognition of chemically relevant
cycles is not a trivial problem in terms of what kind of graph cycles are chemi-
cally relevant, which is also reflected in the extended discussion and large num-
ber of papers dealing with this problem [26–30]. Lynch et al. [31] reviewed ring
perception algorithms for chemical graphs and investigated which kind of ring
set suffices to describe all rings in a molecule. It was concluded that there are
many valid solutions for describing a ring set, as long as the description is con-
sistent and reproducible. An enumeration of all possible smallest sets of smallest
rings is suggested to meet this requirement.

With the aim of interpreting and finding planar rings in biologically relevant
ligands, reproducibility for complex ring combinations is not essential provided
that all relevant ring atoms are covered. Therefore, an efficient algorithm for
finding only one smallest set of smallest rings was implemented and will be de-
scribed in the next section. From the many reports on algorithms for finding
the smallest set of smallest rings (SSSR), the report of Figueras describing an
algorithm using breadth-first search [32] was chosen to form the basis for adapt-
ing the existing data structures of the ilib framework. The reasons for this
choice are the awareness of the relevant previous reports [29, 30] in his paper, a
very concrete description of the algorithm presented and its high efficiency. It
was shown that, for common cases, the breadth-first approach can be 2000
times faster then the previously suggested depth-first search. For this algorithm,
the following terms need to be defined:
� path: a list of adjacent atoms describing a “walk” through the molecular graph
� ring closure: a cycle in the molecule graph
� path intersection between P1 and P2: a path I that contains all elements (atoms)

from P1 and from P2 that are part of both P1 and P2

� valid ring closure: a ring closure that has a path intersection consisting of ex-
actly one atom.

The assembly of the ring set was implemented as follows:
1. Simultaneously extend paths from a starting atom following all neighbors in

a breadth-first manner.
2. If an atom already has a path, a ring closure is found. If this closure is a valid

ring closure (i.e. the intersection of the colliding paths is a one-atom path),
the corresponding path will be added to the set of rings.

The implementation was adapted using reference lists instead of arrays per-
forming the following steps:
1. Create a BFS-Queue Q containing the first atom.
2. Get the first atom a from the queue and remove it from Q.
3. For each neighboring atom n with respect to a, which is not equal to a:
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– If the path of n is null, extend path by n and put n to the back of the
queue.

– If the path belonging to n is not null, compute the intersection between the
path of the first element of Q and the path of n. If the intersection is a sin-
gle atom, compute the ring from the path of n appended by the path of the
first element of Q.

4. Go to step 2.

All atoms with more than one neighbor are checked for valid ring closures
using the procedure described above and are added to the set of rings if the
found ring is not already a member of the ring set.

6.2.2
Geometric and Semantic Analysis

From the PDB and topological analysis, we construct a molecular graph with
untyped bonds and recognized chemical rings. For correct chemical recognition,
we need to determine hybridization states, from which we then try to derive cor-
rect bond types.

The first assignment step was to detect planar rings that obey the Hückel rule
of 4n+2 p-electrons and flag them as aromatic, i.e. force all the atoms into an
sp2 hybridization state. For planarity recognition, three arbitrarily chosen adja-
cent ring atoms form a base plane. Subsequently, for each atom of the ring, the
distance to this base plane is computed, d being zero for the ideal case. In vec-
tor notation, the plane equation can be described as follows:

��P ��PAtom1���P ��PAtom2���P ��PAtom3� � d

where �PAtom1, �PAtom2 and �PAtom3 form a plane and �P is the point to be investi-
gated. In component notation, the same equation can be written as determinant
derived from the 3D coordinates of the three atoms A1, A2 and A3:

x � xA1 y � yA1 z � zA1

xA2 � xA1 yA2 � yA1 zA2 � zA1

yA3 � xA1 yA3 � yA1 zA3 � zA1

������
������ � d

As rings are rarely perfectly planar, a threshold for the in-plane-distance had to
be determined: Comparing distorted pyrroles in protoporphyrin rings with sp3

atoms in pyrrolidines reveals that a threshold of 0.65 Å is adequate for the deter-
minant described above.

For hybridization state assignment in chains, a novel method using geometry
templates is created. The reason for this new method was that all previously
used methods are derived from force-field potentials and use bond angles or tet-
rahedral angles. Whereas these angles only consider at most two neighbors of
an atom, our new method considers all neighbors and their geometric relations.
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For each hybridization state, a rigid geometric body is created and optimally
aligned with the central atom. For sp3, a tetrahedral geometric template is cre-
ated (see Fig. 6.1a), whereas sp2 atoms are represented by a planar triangle (see
Fig. 6.1b) and an sp state is indicated by a linear alignment. Absolute distances
are then summed and divided by the number of neighbors to determine which
template fits best and determines the hybridization state. Details on this algo-
rithm can be found in a previous paper describing LigandScout in more detail
[33].

6.2.3
Double Bond Distribution

Whereas sp3 and sp hybridization states directly indicate bond order, sp2 atom
chains show an alternating bond pattern and therefore the assignment of bond
orders needs some further investigation. The assignment of commonly occur-
ring functional groups and double bond patterns as proposed by Sayle [16] is
followed by a procedure that recursively assigns the maximum number of dou-
ble bonds to the remaining adjacent sp2 atoms.

6.3
Chemical Feature-based Pharmacophores Used by LigandScout

Selecting chemical feature types for the construction of pharmacophores is the
most important step towards pharmacophore creation. In early pharmacophore
modeling techniques such as the active analog approach described by Marshall
et al. [34], pharmacophore features could contain any fragment or atom type.
Later techniques such as the software package Catalyst [35], however, use a
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Fig. 6.1 Geometry templates for a tetrahedral sp3 atom
(a) and a triangular planar sp2 atom (b).



more general way for building pharmacophore queries, for example using a sin-
gle geometric entity for all negative ionizable groups. In real-life applications,
these features are customized to achieve the desired filtering efficiency [36]. The
discussion below will show that several arguments exist for continuing with this
trend and even further extending the generalization of chemical functionalities.

6.3.1
Characteristics of Chemical Features: Specific or Comparable?

General definitions may result in models that are universal to the detriment of
selectivity. Selectivity, nonetheless, is a major issue in pharmacophore validation
and, therefore, feature descriptions that are too general need to be changed
from reflecting universal chemical functionality to representing distinct func-
tional groups. A common approach is to derive a model from distinct ligands in
order to represent the specific mode of interaction as a chain of functional
groups or exclusions thereof [36]. By restricting general chemical feature defini-
tions in the way described above, the number of standard well-known features
increases at the cost of comparability. However, only comparable pharmaco-
phores are sufficiently universal and can represent a mode of action instead of
a set of already existing ligands. Additionally, automated processing of pharma-
cophores becomes more transparent if chemical features stay comparable.

In order to describe the levels of universality and specificity of chemical fea-
tures, a simple layer model is proposed to allow referral to these properties
more easily. Table 6.1 shows a proposed classification of abstraction layers of
chemical features: A lower level corresponds to higher specificity and therefore
lower universality.

Below are some examples of chemical features according to the specificity of
this layer model:
� Layer 1: A phenol group facing a parallel benzenoid system within a distance

of 2–4 Å.
� Layer 2: A phenol group.

6.3 Chemical Feature-based Pharmacophores Used by LigandScout 137

Table 6.1 Abstraction layers of chemical feature constraints

Layer Classification Universality Specificity

4 Chemical functionality (positive ionizable area,
lipophilic contact) without geometric constraint

+++ –

3 Chemical functionality (hydrogen bond donor,
acceptor) with geometric constraint

++ +

2 Molecular graph descriptor (atom, bond) without
geometric constraint

– ++

1 Molecular graph descriptor (atom, bond) with
geometric constraint

– – +++



� Layer 3: H-bond acceptor vector including an acceptor point as well as a pro-
jected donor point; aromatic ring including a ring plane.

� Layer 4: H-bond acceptor without the projected point; lipophilic group.

The most frequent reason for creating features on the low universality levels 1
and 2 is that the definitions of the higher levels are not sufficient to describe
the features occurring in the training set (see [36] for an example). Even if cus-
tomization results in a layer 1 or layer 2 feature, there should be a possibility of
including layer 3 or 4 information in order to categorize and thus increase com-
parability (for example, a carboxylic acid as a layer 2 feature is a subcategory of
‘negative ionizable’, which is a layer 4 feature).

LigandScout should serve as a basis for the comparison of feature locations
and properties. Therefore, we needed to design a chemical feature set that is
still universal but yet selective enough to reflect all relevant types of ligand-re-
ceptor interaction. This set is described in the next section.

6.3.2
Fully Automated Perception of Chemical Features

The chemical feature definitions described in the following sections are all cate-
gorized into hydrogen bond interactions, which are described as layer 3 fea-
tures, and also into charge interactions and lipophilic interactions, which are re-
presented as level 4 features. All current layer 4 features are represented as
points with a tolerance radius forming a sphere, whereas layer 3 features are re-
presented by vectors. The chemical feature definitions are specified in Daylight
SMARTS notation [37] (listed in detail in Table 6.2) and directly imported into
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Table 6.2 SMARTS patterns for chemical features (HBA-F,
hydrogen bond acceptor/electrostatic fluorine interaction;
HBD, hydrogen bond donor; PI, positive ionizable; NI,
negative ionizable)

Inclusion patterns Exclusion patterns

HBA-F {[O,S]}[#1] c1nnnn1
{N}[#1]
C{F}

HBD {[N,O,S;X1,X2]} [–,–2,–3]
PI {[NX3]}([CX4])([CX4,#1])[CX4,#1]

{N}=[CX3]({[N;H1,H2]})[! N]
N=[CX3]({[NH1]}){[NH1]}
{[+,+2,+3;! $(*[–,–2,–3])]}

NI [S,P](={O})(={O}){[OH]}
[S,C,P](={O}){[OH]}
{c}1{n}{n}{n}{n}1
{[–,–2,–3;! $(*[+,+2,+3])]}



the program. The SMARTS syntax has been slightly extended by marking atoms
used for geometry constructions by the insertion of braces, { and }, around the
atom definition. If several atoms are marked, the center point between them is
regarded as the reference point.

6.3.3
Vectors: Hydrogen Bonding

Hydrogen bonding occurs when covalently bound hydrogen atoms with a positive
partial charge interact with another atom with a negative partial charge [38]. This
typically happens when the partially positively charged hydrogen atom is posi-
tioned between partially negatively charged oxygen and nitrogen atoms, but is also
found in different situations as described below. Additionally, electrostatic interac-
tions of fluorine atoms with hydrogen bond donors were treated in a similar way as
hydrogen bond acceptors, because they exhibit comparable geometric constraints.

Assuming an ideal hydrogen bond angle of 180�, the hydrogen bond is sup-
posed to be broken when the angle difference exceeds 34�. This was derived from
hydrogen bonding in water [39] and is reflected in the 146� angle shown in Fig. 6.2

For an sp2 hybridized donor atom, the position of the added hydrogen can be
used as a basis for the calculations because there is only one plausible coordi-
nate position. If the angle formed by the two heavy atoms and the shared hy-
drogen exceeds 146�, the H-bond is considered to be broken. For the case of an
sp3 atom being the donor atom, the hydrogen may rotate freely and, conse-
quently, the artificially added hydrogen position cannot be taken into account.
In order to formulate a valid constraint reflecting hydrogen bond plausibility,
the first adjacent atom on the donor side is added to the consideration. The an-
gle that determines when the hydrogen bond is considered to be broken is set
to a default deviation of 34� [39]. Hydrogen bond acceptors are to be regarded
symmetrically.

6.3.4
Points: Lipophilic Contacts and Charge-transfer Interactions

Both lipophilic contacts and charge-transfer interactions represent layer 4 fea-
tures and are implemented as 3D points with a specified tolerance.

6.3.4.1 Hydrophobic Contacts
Similarly to the concept of the Catalyst software package [35, 40], hydrophobic
areas are implemented in the form of spheres located in the center of hydro-
phobic atom chains, branches or groups. First, a hydrophobicity scoring func-
tion pursuant to the Catalyst definition is implemented. As a next step, the algo-
rithm checks if an ensemble of adjacent atoms is able to attain a sufficient over-
all hydrophobicity score. If this condition is met and a hydrophobic area in the
macromolecule exists, a level 4 feature consisting of a sphere with a tolerance
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radius of 1.5 Å is added to the weighed center of these atoms. A hydrophobic
feature sphere is added if and only if a hydrophobic feature exists on the macro-
molecule side within a distance of 1–5 Å. The maximum distance was set to 5 Å
because a larger gap would permit water molecules to be located in between.

6.3.4.2 Positive and Negative Ionizable Areas
Positive ionizable areas are represented by atoms or groups of atoms that are
likely to be protonated at a physiological pH. These are summarized in Table
6.2 and include basic amines, basic secondary amidines, basic primary ami-
dines, basic guanidines and positive charges not adjacent to a negative charge.
Negative ionizable areas are atoms or groups of atoms that are likely to be de-
protonated at physiological pH, including sulfonic acids, phosphonic acids, sul-
finic, carboxylic or phosphinic acids, tetrazoles and negative charges which are
not neutralized by adjacency to a positive charge.

A sphere with a tolerance radius of 1.5 Å represents an ionizable feature and
is added for the case that a reversely charged ionizable feature can be found on
the macromolecule side within a plausible distance range. This interval is set to
1.5–5.6 Å and is user-adjustable.

6.4
Overlaying Chemical Features

For the purpose of finding common chemical features occurring in different struc-
tures with bound ligands in comparable binding modes, an overlaying algorithm
for several pharmacophore models is implemented: A compatibility graph of all
feature point pairs is constructed regarding vector base points and projected
points as independent classes of chemical features. Feature pairs are defined as
being compatible if and only if their distance range lies within the defined toler-
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Fig. 6.2 Hydrogen bonding geometry for sp2 (a) and sp3 atoms (b).



ance for both tolerance spheres. From the largest compatible subset of chemical
feature compatibility pairs determined by maximum clique detection [41], two dis-
tinct common feature pharmacophore models are formed and subsequently
aligned in 3D space performing a single rotation. The calculation of the transfor-
mation matrix necessary for the rotation uses an analytical, efficient algorithm by
Kabsch [42], which supports the alignment of point sets with specific weights. A
weight of 1.0 was assigned to chemical features located on the ligand and a weight
of 0.1 to excluded volume spheres; this was necessary to prioritize the alignment
of chemical functionality rather than the alignment of exclusion spheres.

For sufficiently similar models, this algorithm is extremely useful for deriving
“common-feature” pharmacophores. Its use, however, is restricted to the nearly
identical binding pockets; conformational differences in the two compared pro-
tein pockets will lead to useless results.

6.5
3D Visualization and Interaction

In order to understand the three-dimensional structure of the ligand and its en-
vironment, and to interact with it, an interactive graphical user interface includ-
ing visualization techniques was implemented in LigandScout. The visualization
is implemented using OpenGL, an industry standard for 3D graphics program-
ming, which leverages available graphics hardware to achieve fast rendering
and interaction. OpenGL is available on virtually all current operating systems
and thus helps to make the program largely platform-independent.

When a new macromolecule is loaded, it is first displayed in a mode showing
only its backbone [43], in addition to the binding sites containing the ligands.
Clicking on a binding site will take the user to a different view of just this li-
gand and its immediate environment (Fig. 6.3).

6.5.1
Core and Environment Visualization

When visualizing ligand–macromolecule interactions, we differentiate between
the ligand “core” molecule) and its immediate environment. The environment
consists of all atoms in the macromolecule residing within a distance of up to
5 Å from the ligand.

Molecule visualization adheres to the standard conventions for depicting mol-
ecules in chemistry by providing the usual display modes for molecules, using
the standard colors for elements and so on. Additionally, it can optionally show
context-related information in tool-tips (similar to additional information in user
interfaces), and also provide means to interact with the molecule.

There are several different display styles that can be used to depict the mole-
cule and its environment (Fig. 6.4). In the standard setup, the core is drawn
using the stick mode, and the environment is rendered using lines. The differ-
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Fig. 6.3 After loading a PDB file, the macromolecule’s
backbone is shown, along with the binding sites (a). After
selecting a binding site, the user is taken to a zoomed-in view
of the ligand and its immediate environment (b).

Fig. 6.4 Render styles in LigandScout: (a) lines, (b) ball and
stick, (c) stick and (d) spacefilling/CPK.



ence between the two is thus clearly defined and the environment is less likely
to occlude parts of the ligand.

Hydrogens can be shown or hidden and they can also be drawn as stubs
(Fig. 6.1). Stubs are useful to show the possible positions of hydrogens when
editing molecules or when hydrogens are of little interest.

For human perception of the depth of three-dimensional molecular struc-
tures, it is important to provide depth cues [44]. Movement is the strongest
depth cue, so it is very important to render the image quickly enough to provide
smooth movements of the object on the screen. Lighting is used to provide a
better impression of the shapes of objects, and also additional depth. Finally, ob-
jects that are further away appear as if seen through fog, which improves the
impression of three-dimensional space.

6.5.2
Pharmacophore Visualization

LigandScout pharmacophores solely consist of chemical features classified as
layers 3 and 4 (Table 6.2). Visualization mainly distinguishes between point and
vector features: point features (layer 4) are defined as a center with a tolerance;
this group encompasses hydrophobic, positively ionizable and negatively ioniz-
able areas, in addition to excluded volume spheres. Hydrogen donors, acceptors
and donor–acceptor pairs belong to the vector features group.

Point features are rendered as spheres with different colors to differentiate
them (Fig. 6.5): hydrophobic/lipophilic features are drawn in yellow and positive
and negative ionizable features are drawn in red and blue, respectively. Excluded
volume spheres use a dark gray color to signify their meaning.

Spheres are drawn as semi-transparent objects, with a wire frame on their
surface to enhance the impression of depth and to make it easier to judge the
size of the spheres in the third dimension (Fig. 6.6).
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Figure 6.5 Different features in the pharmacophore visualization.



Vector features are drawn as three-dimensional pointers or as a pair of two
opposing pointers in the case of a donor–acceptor pair.

6.5.3
Interaction

Any visible object in the visualization may be selected for subsequent user inter-
action. The distinction between core and environment is useful to restrict the
pickable objects to either group. This is especially important when selecting an
entire region, because it is likely that unwanted objects in front of or behind
the desired ones would otherwise be included in the selection.

Tool-tips provide additional information on atoms, bonds and chemical fea-
tures and allow the user to measure angles and distances (Fig. 6.7). Tool-tips are
semi-transparent, two-dimensional labels that are overlaid over the molecular
image and point to the object for which they provide information.

When a new ligand is loaded, the render style of each atom or bond is deter-
mined by whether it is in the core or the environment. This can be changed for
the complete ligand or environment at once or individually for each atom or
bond.

The information about selected objects is also communicated to other views
in LigandScout, such as a 2D depiction and a tree-viewer. In this way, the user
can easily identify parts of the molecule in the different views and find addi-
tional information about them.
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Fig. 6.6 Pharmacophore of complex 1opj, consisting of four
lipophilic aromatic points (light gray spheres), three
vectorized HBA (arrows) and excluded volume spheres
(dark gray spheres).



6.6
Application Examples: Pharmacophore Generation and Screening

In order to assess the usability of pharmacophores with general chemical feature
definitions for virtual screening experiments, we demonstrate two application ex-
amples that have already been published [33]. We chose Catalyst as the screening
platform, because it allows one to incorporate the chemical feature definitions de-
scribed in Table 6.2 directly into the program. These feature definitions contain
five different types: lipophilic points (LIP), positive ionizable points (PI), negative
ionizable points (NI), hydrogen bond donor vectors (HBD) and hydrogen bond ac-
ceptor vectors extended by electrostatic interactions occurring between fluorine
atoms and hydrogen donors (HBA-F). Additionally, exclusion volume spheres
were used as steric constraints. Pharmacophores were imported as hypotheses
into Catalyst by interfacing the hypoedit tool from LigandScout.

The hypotheses were applied as screening filters to two different databases: a
database consisting of all “drug-like” PDB ligands and the Maybridge 2003 data-
base. For the “drug-like PDB ligands”, a molecular weight constraint of mini-
mum 250 and maximum 600 in combination with the “Lipinski rule of 5”
(maximum 10 acceptors, maximum five donors, maximum log P = 5) is applied
[45, 46]. Owing to the lack of experimental log P values, the topological clog P
estimation algorithm of Wildman and Crippen [47] is used as a filter. Although
this rough kind of filtering may be considered problematic, the result should
give an idea about the number of drug-like molecules in the PDB and the sort
of enrichment that a pharmacophore is able to provide against a background of
pharmaceutically relevant compounds. From the 6680 unfiltered PDB ligands
with removed duplicates, 2765 conforming to the simple drug-likeness criteria
remained. These were converted to Catalyst’s multi-conformational format using
the FAST method.

Additionally, the Maybridge compound library (Version 2003, containing
59 194 compounds) is converted into multi-conformational format and screened,
analyzing the resulting hit lists for their accordance with the Lipinski drug-like-
ness criteria as applied to the PDB ligand database. A maximum mol weight of
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Fig. 6.7 Examples of different types of tool-tips for atoms, angles and distances.



600 is chosen for the two examples described below; it may need to be changed
for pharmacophores targeting larger compounds.

6.6.1
HRV Coat Protein Inhibitor

Three PDB entries (1ncr, 1nd3 and 1c8m) contain pleconaril (PDB id: w11)
bound to the protein hull of Rhinovirus subtype 16. From these entries, three
pharmacophores were automatically created and overlaid. The final common
feature pharmacophore consists of three lipophilic points, two aromatic lipophi-
lic points, one H-bond acceptor and 22 excluded volume spheres, which charac-
terize the protein environment of the lipophilic points. The results of the
screening experiments are shown in Table 6.3. The search in the PDB ligand
database yielded four hits: pleconaril (PDB id: w11), WIN61209 (PDB id: w01),
WIN68934 (w02) and WIN65099 (w03), which are all reported to be Rhinovirus
16 hull protein binding agents [48]. Searching the Maybridge database yielded
67 hits; the drug-likeness criteria could further reduce the list to 47.

6.6.2
ABL Tyrosine Kinase Inhibitor

STI-571 (Gleevec) has been approved in the USA for the treatment of chronic
myelogenous leukemia (CML) under the trade-name Gleevec. Crystal structures
of a close analog of STI-571 revealed that STI-571 binds to the inactive form of
ABL tyrosine kinase, stabilizes it and thus prevents activation [49]. This binding
mode was targeted in the second application example of LigandScout. Three
relevant PDB entries for this investigation were identified: 1fpu (Fig. 6.8), 1iep
and 1opj. From these three entries, six pharmacophores were created from three
complexes (all three records contained two different chains with a ligand each)
and two different ligand molecules, STI-571 (PDB id: sti) and its variant N-(4-
methyl-3-{[4-(3-pyridinyl)-2-pyridinyl]amino}phenyl)-3-pyridinecarboxamide (PDB
id: prc) used in 1 fpu. In a straightforward approach, all six pharmacophore
models were merged together into a single hypothesis using the clique detec-
tion algorithm together with Kabsch alignment described above.

The resulting pharmacophore model contains four lipophilic aromatic areas,
two acceptors and eight excluded volume spheres. The same screening experi-
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Table 6.3 Screening results

Database HRV coat protein subtype 16 ABL tyrosine kinase

Hits W11-like hits Hits Gleevec-like hits

PDB ligands (2,765 entries) 1 1 2
2Maybrige 2003(59 194 entries) 48 0 7



ments as already carried out with the first example gave the results depicted in
Table 6.3. The pharmacophore model is able to identify all Gleevec entries from
the PDB database whereas from the Maybridge database, seven compounds
were identified which might be potential lead structures for ABL tyrosine kinase
inhibitors.

6.7
Conclusion

Techniques and paradigms used in computer-aided drug discovery have changed
rapidly over the past few years. Docking is still the most commonly used meth-
od for structure-based drug design. Pharmacophore modeling, however, shows
clear advantages regarding the computational cost for virtual screening and the
understanding of the interaction between macromolecule and ligand. Ligand
Scout promises to become a useful tool to make interaction information avail-
able as a transparent 3D model, which not only can be used for efficient virtual
screening, but also provides means to understand intuitively the binding mode
of a small-molecule ligand to a target. Overlaying for the generation of ‘com-
mon feature pharmacophores’ is one interesting application; another one might
be to add information in the form of geometric constraints or weights to signifi-
cantly improve enrichment. The need for transparency and the ability to modify
automated results emphasize the need for high-quality visualization and the
ability for interaction provided with LigandScout.
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Fig. 6.8 Pharmacophore model automatically derived from
PDB entry 1fpu consisting of four lipophilic aromatic points
(light gray) and three hydrogen bond acceptors
(green vectors).
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Francesco Ortuso, Stefano Alcaro, and Thierry Langer

7.1
Introduction

The pharmacophore concept is a widely accepted and useful approach in both
early drug discovery stages of hit determination and lead optimization [1]. A
vast number of slightly different methods to build such models exist and some
of them are discussed in this book. Usually pharmacophore models are created
by collecting the most relevant structural features of biologically active com-
pounds. When no three-dimensional structure information on the target exists
most cases of the time, chemical intuition is necessary for completing the li-
gand-based pharmacophore generation, in ambiguous cases possibly leading to
erroneous models. One of the most advanced applications of pharmacophore
models is to use them as virtual screening filters of large compound database
sets against a wide variety of multiple macromolecular targets [2]. This emer-
ging technique, now considered as a new source of novel drug leads [3], is at-
tracting more and more the attention of industrial pharmaceutical research.

Among the computational methodologies widely adopted in drug design stud-
ies, Goodford’s GRID [4] program is very well accepted and trusted in the scien-
tific community. It works by mapping the three-dimensional space around
molecular targets with probes mimicking the main chemical properties of most
common atom types and small moieties that are found in ligands. GRID data
can be used to identify the best probe locations as map display and also 3D in-
formation for chemometric analysis [5–8]. The large availability of crystal and
NMR structures of macromolecular complexes deposited in the Protein Data
Bank (PDB) [9] is an excellent source for studying interactions between mole-
cules of different nature (proteins, nucleic acids, small organic ligands).

In this chapter, we describe the results of our studies we aimed at the devel-
opment of a general computational procedure to generate automatically and un-
biased objective pharmacophore models using the GRID approach and starting
with PDB macromolecular complexes. Within the context of structure-based
pharmacophore modeling, it represents an approach that is somehow comple-
mentary to that described in Chapter 6. We have used logically combined maps
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computed with the GRID force field in order to derive essential information on
the interactions between occurring within the molecules of a PDB complexes
for to generating chemical feature-based pharmacophore models. However, this
approach can also be extended to cases where only one macromolecular com-
plex partner is present, since the computation of GRID maps requires at least
one binding partner. The versatility of the new computational approach has
been tested benchmarked in several application examples using molecular com-
plexes of different nature.

7.2
Theoretical Basis of the GBPM Method

The GRID-based pharmacophore model (GBPM) is created in a six-step proce-
dure as depicted in Fig. 7.1.

The first step is dedicated to the PDB file pretreatment, which often contains
water molecules and no hydrogen atoms. In the pretreatment, the user should
fix typical problems such as missing residues, missing side-chains and wrong
bond orders, especially for bound organic compounds. The GREAT and GRIN
modules of the GRID software help contribute to this task and allow the prepa-
ration of the GRID mapping procedure. Assuming that the complex has two in-
teracting molecules � and �, as in the case of protein–protein or protein–ligand
complexes, the main goal of this first step is to obtain three interaction energy
maps with from the �+�, � and � subunits, keeping the atomic coordinates of
the original PDB model (Fig. 7.1).

The second step performs the GRID calculation with a given probe on the
three subunit models. In order to make the application of Boolean operations
with the map files as easy as possible, the matrix dimension of the GRID box is
exactly maintained as in the largest model, i.e. that with �+� subunits, main-
taining, for both subunits, the original complex atom coordinates. The three
maps obtained are named A, B and C, respectively (Fig. 7.1).

The third step is based on the GRAB procedure, implemented in GRID v. 21,
performing a Boolean operation [10] between the maps B and A. The resulting
map D has, by definition, the same matrix dimension of the original maps and
reports, with negative energy values, the �–� interaction areas. According to the
GRAB algorithm [10], the � components are converted into positive or zero val-
ues comparing maps D and C. The resulting map E reports the acceptance de-
gree of a certain probe into the �–� binding site. Such an indication represents
a first, interesting, advantage of the GBPM method, since actually no indication
has been given in order to identify the right positioning and the extension of
map E. Definitely, each point of the �–� interaction area is automatically defined
with unbiased influence of the user.

The fourth step is dedicated to the identification of the most important interac-
tion areas of map E. This task is carried out using the MINIM utility included
into the GRID program. This program collects all points within a certain energy
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threshold, allowing the interpolation of the closest ones. The choice of an en-
ergy threshold value is a biased task per se but, considering a pharmacophore
model as a minimum interaction descriptor built by few features, we have gen-
erally found an energy threshold about 10% higher than the global minimum
value to be appropriate. This means, in most cases, about 1 kcal mol–1 above
the global minimum energy determined. Actually, such a value allows at least
one feature to be collected for each probe used. Often the above energy thresh-
old yields too complicated pharmacophore models that can be reduced using
the GRID energy as a cutting criterion.

In order to design a suitable pharmacophore model, all reported operations
should be repeated using at least three different probes: the hydrophophic probe
(DRY), a hydrogen bond acceptor (O) and a hydrogen bond donor (N1). This
choice allows a basic characterization of most of the interaction areas; however,
more sophisticated and selective models can be obtained by adding other GRID
probes such as halogen or charged atoms. In the fifth step, the information origi-
nating from the different probe experiments are simply merged into a prelimin-
ary pharmacophore model (multiple probe features of Fig. 7.1).

The sixth step is dedicated to the validation of this the preliminary model and
eventually its modulation in terms of number of features (i.e. its complexity).
The quality of the pharmacophore model is tested as the capability to recognize
selectively the original ligand present in the PDB file. Technically the evaluation
step can be carried out by the Catalyst software [11], in particular using the Ci-
Test fit module [12]. The preliminary model is imported converting the GBPM
points into Catalyst features. The GRID energies are also included in the fit
analysis as feature weight according to the following equation:

wFij � EFi�AEFj �1�

where wFij is the weight for the feature i into the hypothesis j, EFi is the GRID
energy for the features i and AEFj is the average GRID energy value for the hy-
pothesis j. This approach allows a maximum fit value (MFV) equal to the total
number of features available for the hypothesis j. Taking into account the GRID
energies, several preliminary models (hypotheses) can be designed reducing the
number of features. Unfortunately, owing to the high variability, i.e. extension
and interaction type, of the �–� subunit interface, the number of preliminary
models can not be predefined. Therefore, in order to identify the best one, all
possible models are submitted to a CiTest fit.

A fit index (FI), defined as ratio between the CiTest fit and MFV, is used for
the evaluation of each hypothesis and as a choice criterion for the identification
of the best GBPM.

Moreover, the FI descriptor, which makes possible comparisons among mod-
els with different numbers of features, can be used to extend the evaluation step
including other molecules known to interact with the same � subunit binding
site. Such an eventuality was found to improve strongly the quality of the final
model.
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Fig. 7.1 Flow chart of the GBPM starting from a PDB complex.
The bottom figure represents a generic feature-based pharmaco-
phore model.



7.3
Application Examples

In this section, we describe the application of the GBPM method to different
selected complexes. The resulting pharmacophore models have been tested ex-
tensively for their capacity to retrieve known ligands for the target. The applica-
tion examples were selected to be representative of a certain type of molecular
interaction, including protein–protein, and DNA–ligand interactions. More ap-
plication examples will be described elsewhere [13].

7.3.1
Protein–Protein Interaction: XIAP

This kind of interaction can be considered as the most challenging among our
application examples because it is intrinsically characterized by the lowest
degree of information [14]. We demonstrate the application of the GBPM proce-
dure to a member of a family of proteins involved in the regulation of apopto-
sis, the X-linked inhibitor of apoptosis (XIAP). Its third baculovirus IAP repeat
domain (BIR3) recognizes compounds 1–5 as shown in Fig. 7.2.

The structure of 1 has been determined by NMR spectroscopy and is depos-
ited in PDB entry 1G3F [15]. Compound 2 conformations were isolated from
1XB0 and 1XB1 models [16]. Five conformations of 3 were considered from the
1XB0 model. Another conformation of this peptide was extracted from the chi-
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Fig. 7.2 Chemical structures of compounds 1–5 interacting
with BIR3 domain of XIAP and their PDB record.



mera 1TW6 structure [17]. From the same model, 4 was also obtained. The con-
formation of the peptidomimetic 5 was obtained from the 1TFQ model [18]. Fi-
nally, the Smac protein 6, complexed with XIAP, was considered using the PDB
1G73 crystallographic model (resolution 2.00 Å). Since 6 is significantly larger
than 1–5, the recognition with XIAP is not exclusive to the BIR3 domain, but
additionally involves other regions. A pharmacophore model able to describe en-
tirely this kind of recognition is technically feasible but useless for the virtual
screening of 3D databases, because it is unusual to search for compounds with
these structural prerequisites of low drug likeness. Hence the GBPM was de-
rived using the original PDB 1G3F complex in which is reported the recogni-
tion of 1, a relatively small synthetic peptide, and the XIAP BIR3 domain. More-
over, 1 is the largest ligand among 1–5, allowing a more exhaustive description
of the interaction area.

The recognition area with caspase-9 is fairly extended (about 700 Å2) [19], and
several hydrophobic, electrostatic and hydrogen bond interactions are involved,
so a simple receptor based pharmacophore model resulted relatively hard to de-
rive. Moreover, the very small number of molecules known to recognize the
XIAP BIR3 domain does not allow a rigorous classical ligand-based approach.
For these reasons, GBPM represents a useful tool for the XIAP case study.
Computational work followed the flow chart reported in Fig. 7.1. After the pre-
treatment step 1, 1 was considered as the � and the XIAP as the � subunit. The
PDB 1G3F complex was used to compute GRID molecular interaction fields
with O, N1 and DRY probes (maps A). These procedures, using the same com-
plex box dimensions, were repeated separately on the � (maps B) and the �

(maps C) subunits, maintaining, in both cases, the respective complex atom
coordinates (step 2). Maps A and B were compared by the GRAB algorithm
obtaining the maps D that were used, together with maps C, to obtain maps E
(step 3). The three maps E were submitted to MINIM, selecting, after interpola-
tion, those points with an interaction energy within the first kcal mol–1 with re-
spect to the global minimum. This approach allowed us to obtain four features
with the N1 probe, three with DRY and only one with O. The preliminary mod-
el (HYP1) was converted into the a Catalyst pharmacophore model using for
each probe the most corresponding feature: for N1 the hydrogen bond donor
feature (HBD) was used, for DRY the generic hydrophobic (HPB) and for O the
hydrogen bond acceptor (HBA) were used as features. The weight of each fea-
ture was scaled taking into account the GRID interaction energies using Eq. (1)
(Table 7.1).

The resulting HYP1 model was tested, with both rigid and flexible CiTest al-
gorithms, using ligand 1. Since the resulting FI index, equal to 0.02, revealed
only a poor recognition of 1, HYP1 was simplified by removing the less relevant
hydrogen bond donor HDB3 and HDB4 features and rescaling the weight of
the remaining ones as reported for HYP1. The evaluation of the new seven-fea-
ture model, HYP2, indicated a better fit with 1 (FI index increased to 0.57). The
simplification of the pharmacophore model proceeded with the elimination of
the two less relevant hydrophobic features (HPB3 and HPB4) adjusting the
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weight of the remaining ones. The new five-feature model, HYP3, notably in-
creased the FI index to 0.88. In order to make a comparison between HDB and
HPB components, we designed another model, HYP4, including in HYP3 all
the HDB features. After rescaling of the HYP4 feature weights, an FI value of
0.49 was reached. The comparison of the FI values revealed a similar behavior
of HBDs and HPBs, indicating HYP4 to be the most promising model. With
the aim of improving the selective recognition capabilities of HYP4 and taking
into account the presence of a positively charged N-terminus on 1–5, we intro-
duced the positive ionizable feature POS. This task was carried out including in
the GBPM flow chart (Fig. 7.1) the GRID probe N+. The single feature map re-
vealed for the N+ only one point within the first kcal mol–1 with respect to its
global minimum. Its interaction energy, equal to –17.88 kcal mol–1, was the
most relevant with respect to all other probes. Interestingly, the location of this
point was coincident with that of the HDB1 which showed an interaction en-
ergy of –7.31 kcal mol–1. Consequently, we built a new model, HYP5, substitut-
ing HDB1 with POS and rescaling the feature weights (Table 7.2).

Surprisingly, the CiTest fit of ligand 1 with HYP5 indicated a low FI value of
about 0.4. On investigating the reason for this, a different recognition pattern of
1 was found. Actually, the POS feature was exactly located on the positively
charged N-terminus whereas the previous HBD1 showed a positioning far from
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Table 7.1 Preliminary 1G3F GBPM

GRID probe Catalyst feature GRID IE a) CiTest weight

N1 HBD1 –7.31 1.53
N1 HBD2 –7.06 1.48
N1 HBD3 –6.49 1.36
N1 HBD4 –6.48 1.36
O HBA1 –10.37 2.17
DRY HPB1 –1.96 0.41
DRY HPB2 –1.15 0.24
DRY HPB3 –1.07 0.22
DRY HPB4 –1.05 0.22

a) GRID interaction energy in kcal mol–1.

Table 7.2 HYP5 model components

GRID probe Catalyst feature GRID IE a) CiTest weight

N+ POS –17.88 2.33
N1 HBD2 –7.06 0.98
O HBA1 –10.37 1.37
DRY HPB1 –1.96 0.15
DRY HPB2 –1.15 0.26

a) GRID interaction energy in kcal mol–1.
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Fig. 7.3 Hyp1G3F model recogni-
tion of compounds 1–5. Feature
weights are reported in parenthe-
ses.



such a moiety. The roto-translation introduced by the new feature, possessing a
higher weight, does not allow the HBA1 interception of the hydrogen bond ac-
ceptors located on 1. The CiTest algorithm, following the HBA1 weight, tried to
superpose it on the compound oxygen atoms of 1, leading to a lack of recogni-
tion of all other, less relevant, features. According to the interaction energies,
the competition between POS and HBA1 was resolved on removing this last
feature. The new model, Hyp1G3F, after the usual rescaling of the component
weights, was submitted to the evaluation task and found to be superior to the
previous one, with an FI value of 0.95.

Hyp1G3F was then evaluated with respect to 2–5. With all molecules, taking
into account all their experimentally determined conformations, FI values high-
er than 0.90 were reached, confirming the high degree of recognition of known
molecules interacting with the XIAP BIR3 domain of Hyp1G3F (Fig. 7.3).

Thus the GBPM approach was successfully applied to the XIAP application
example, clearly indicating the most relevant features for the BIR3 domain in-
teraction. Such information was derived starting from only one model and was
able to recognize other XIAP BIR3 domain ligands.

7.3.2
Protein–Protein Interaction: the Interleukin 8 Dimer

In the second application example for evaluating the GBPM procedure in pro-
tein–protein interactions, the interleukin 8 (IL8) dimer was analyzed. IL8 plays
a relevant role in immune cell trafficking and in host defense against infection.
It is known that IL8 can exist in both dimeric and monomeric forms and only
the latter is able to interact productively with the CXCR receptors [20]. There-
fore, the equilibrium between the dimeric and monomeric forms can be consid-
ered as an interesting target for modulating IL8 activity. In the present applica-
tion example, we designed a GBPM pharmacophore model for the IL8 dimer
interface which could be useful for discovering molecules modulating the equi-
librium between active and inactive form of IL8.

Our case study was carried out using the NMR-derived PDB model 1IL8,
which represents an average structure of the IL8 homodimer in solution [24].
To apply the GBPM approach, taking into account the general scheme reported
in Fig. 7.1, the 1IL8 chain A was considered as � subunit and the chain B as
the � subunit (Fig. 7.4).

The GRID probes O, N1 and DRY were used in the 1IL8 case study. The pre-
liminary pharmacophore model (HYP1) for the IL8 dimer interface was de-
signed selecting for each probe map E all points with an interaction energy
within 1 kcal mol–1 above the global minimum. As shown in Fig. 7.5, such a
model was built with 20 hydrophobic features (HPB), six hydrogen bond donors
(HBD) and five hydrogen bond acceptors (HBA).

As observed in all our GBPM applications, the first ‘raw’ model, due to the
large number of its features, was often not usable as a pharmacophore model
for screening. As shown in Fig. 7.6, our approach was able to recognize cor-
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rectly the residues responsible for dimer formation, notably those reported by
Clore et al. [21]. Moreover, GBPM identified additional amino acids located at
the dimer interface that could contribute to modulation of the equilibrium be-
tween the active and inactive forms of the IL8. These observation allowed us to
assess positively the application of GBPM to the IL8 case study. In order to
design a more suitable pharmacophore model, we reduced the total number of
features of HYP1, removing the points attributed to a lower contribution to the
overall interaction energy. The best of the models obtained by HYP1 simplifica-
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Fig. 7.4 1IL8 PDB structure. Chain A is represented in green
cartoons and chain B in stick CPK notation.

Table 7.3 Hyp1IL8 components

GRID probe Catalyst feature GRID IE a) CiTest weight

N1 HBD1 –7.01 1.33
N1 HBD2 –6.90 1.31
O HBA1 –6.98 1.32
O HBA2 –6.27 1.19
O HBA3 –6.18 1.17
DRY HPB1 –1.83 0.35
DRY HPB2 –1.77 0.34

a) GRID interaction energy in kcal mol–1.



tion, denoted Hyp1IL8, showed a fit index equal to 0.80 and a good recognition
of the dimerization region. The Hyp1IL8 composition is reported in Table 7.3.

In Fig. 7.6, the interleukin 8 dimerization interface recognition of Hyp1IL8 is
shown.

Although no ligand validation was possible in the present case study, we con-
sidered IL8 to be a good application for GBPM. Actually, no information was
available about the dimer interface and our method designed a pharmacophore
model able to recognize the original ligand and was therefore considered useful
for virtual screening purposes.
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Fig. 7.5 1IL8 GBPM preliminary model. Grey meshes represent
hydrophobic features, hydrogen bond donors are reported in
blue and hydrogen bond acceptors in red.



7.3.3
DNA–Ligand Interaction

The activity of several anticancer and antiviral drugs is due to their affinity to
DNA. Many of these compounds interact with the biological target by binding
to either the minor and/or the major groove. Virtual screening of 3D molecular
databases with pharmacophore models derived from structural information re-
lated to this phenomenon can help to identify new molecules with exhibiting
such a mechanism of action. These reasons stimulated us to evaluate the
GBPM approach also for designing pharmacophore models starting from DN–
ligand complexes.

The wide number of structures available in the PDB focused our attention on
DNA complexes with minor groove binding compounds and therefore 18 struc-
tures solved by crystallographic methods were selected from the PDB [22].
These models reported minor groove complexes to the d(CGCGAATTCGCG)2

dodecamer sequence with different binders. Taking into account their common
chemical scaffold, the ligands were classified into five subclasses, A, B, C, D
and E. In Table 7.4 the common scaffold-based classification, binder chemical
structures, PDB codes and their crystallographic resolutions are reported.

Interestingly, all ligands reported in Table 7.4 revealed the same binding
mode to DNA. In detail, 6–18 bind to the dodecamer’s minor groove from the
fourth pair of nucleotides until the ninth pair. This feature permits the investi-
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Fig. 7.6 Hyp1IL8 chain B recognition.
Feature weights are reported in paren-
theses, hydrogen atoms have been
hidden for clarity.
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gation of two principal aspects of the GBPM approach: (i) the recognition cap-
ability with respect to molecules different from the original structure and (ii)
the relationship of our pharmacophore hypotheses with the complex subunit �.
These tasks were performed by selecting for each common scaffold subclass the
PDB model with the best crystallographic resolution. Entries 442D, 453D, 360D,
1M6F and 166D were thus considered for the subclasses A, B, C, D and E, re-
spectively, and used for building five independent pharmacophore models.
These feature-based hypotheses were evaluated taking into account their FI val-
ues computed with 6, 11, 13, 17 and 18, respectively. The best fitting models
were tested on the remaining ligand set.

The GRID probes C1=, N1 and O were used for building the GBPM hypoth-
eses. We substituted DRY with C1=, which mimic the sp2 carbon atom, because
all ligands possess aromatic moieties. Moreover, the DNA minor groove, owing
to the large number of polar groups, exhibits hydrophilic properties and there-
fore the DRY probe, which identifies those areas where water molecules are not
well accepted, could indicate underestimated information. As reported in the
previous examples, the first preliminary models obtained, owing to their intrin-
sic complexity, were not useful for virtual screening purposes. The number of
features was sequentially reduced following the procedure indicated in the pre-
vious case studies. In Table 7.5 we report the best fitting model compositions,
together with their validating ligand and FI.

As reported in Table 7.5, our hypotheses show different feature compositions.
It was not surprising to observe that in all cases only one hydrogen bond accep-
tor was detected. Actually, the binding sites of 6–18, reported in crystallographic
models, show only two hydrogen bond donors represented by two guanine nu-
cleobases located in position 9 that undergo only weak interactions with the li-
gands. Conversely, as indicated by the larger number of HBD, several hydrogen
bond acceptors are located within the DNA minor groove, interacting strongly
with acidic hydrogen atoms of 6–18. Hydrophobic features, derived by the
C1= GRID probe, were observed in all models. Only model 453D reported one
of this kind of feature. Actually also in this case a second hydrophobic feature
was found within the first preliminary model, but was removed because it was
superposed on a more important hydrogen bond donor. In Fig. 7.7a representa-
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Table 7.5 Best fitting models feature composition and FI values.

Hypothesis PDB model Compound HBA a) HBD a) HPB a) FI

Hyp442D 442D 6 1 1 3 0.75
Hyp453D 453D 11 1 3 1 0.52
Hyp360D 360D 13 1 2 3 0.85
Hyp1M6F 1M6F 17 1 2 2 0.55
Hyp166D 166D 18 1 1 4 0.60

a) HBA, HBD and HPB indicate hydrogen bond acceptor, donor
and hydrophobic features number, respectively.



tion of the pharmacophore model recognition with respect to the generating li-
gand is reported, including, for each hypothesis, the feature CiTest weights.

After the preliminary validation, carried out on the generating ligands, the
best fitting hypotheses were evaluated with respect to 6–18. For binders 6–8, all
crystallographic conformation was taken into account. CiTest results are re-
ported in Table 7.6.

The ligand DNA recognition can be considered an extremely difficult case
study for all pharmacophore model design methods. Actually, nucleic acid com-
plexes, in particular with minor groove binders, are characterized by interaction
between a highly hydrophilic subunit, the DNA, and a low hydrophilic or often
hydrophobic subunit which is the binder. Water molecules have to be displaced
from the nucleic acid, increasing the entropic contribution of binding. In order
to build the complex, the total energy of the system has to be reduced by new
interaction between the DNA and the binder. Such interactions can be ad-
dressed to hydrogen bonding and electrostatic terms. The first ones have to be
formed by the interacting agent because the DNA minor groove possesses
much more acceptor groups than donors. Also, electrostatic moieties, located on
the ligand, cannot be considered with a net negative charge because this could
generate repulsion forces with respect to the target structure. Positively charged
agents could therefore interact with nucleic acid phosphate moieties and not
with the minor groove. These aspects have clearly been indicated by the GRID
analyses performed within the present case study. Actually, we changed the
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Table 7.6 Best fitting hypotheses FI values computed on compounds 6–18

Compound PDB entry Hypothesis

Hyp442D Hyp453D Hyp360D Hyp1M6F Hyp166D

6 442D 0.75 0.44 0.52 0.59 0.61
444D 0.71 0.44 0.51 0.59 0.60
448D 0.75 0.44 0.52 0.60 0.59

7 443D 0.68 0.43 0.52 0.52 0.59
449D 0.67 0.43 0.52 0.52 0.59
445D 0.65 0.43 0.52 0.52 0.59

8 447D 0.68 0.43 0.52 0.60 0.60
1QV8 0.67 0.43 0.52 0.60 0.60

9 1QV4 0.66 0.43 0.52 0.59 0.59
10 109D 0.69 0.68 0.91 0.70 0.47
11 453D 0.64 0.52 0.52 0.45 0.60
12 1FTD 0.76 0.44 0.49 0.59 0.58
13 360D 0.80 0.68 0.85 0.61 0.60
14 1FMS 0.65 0.65 0.75 0.59 0.61
15 1FMQ 0.78 0.67 0.84 0.60 0.60
16 1EEL 0.79 0.69 0.85 0.63 0.60
17 1M6F 0.54 0.55 0.67 0.56 0.61
18 166D 0.52 0.50 0.50 0.53 0.60
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Fig. 7.7 Fit of our best pharmacophore models with respect to their generating subunit �.
Feature weights are reported in parentheses.



DRY probe to C1= because the former indicated a very poor interaction with the
target. The hydrogen bond network has been widely investigated by O and N1
GRID probes and GBPM highlighted the poor presence of hydrogen bond do-
nor groups within the DNA minor groove, reporting only one HBA feature in
all pharmacophore models. Conversely, HBD features were strongly suggested
by the results of the analysis. The application of the GBPM approach to the
present example indicates that it represents a useful computational tool to de-
sign pharmacophore models also for DNA binders. In particular, both different
and common interactions of chemical scaffolds A–E have been highlighted, giv-
ing interesting information not only for virtual screening purpose but also for
rational optimization of known ligands. GPBM revealed a low degree of depen-
dence on the building complex subunit �, recognizing DNA binders showing a
different structure with respect to the builder subunit.

7.4
Conclusions

The GBPM was developed with the aim of defining a general computational
protocol for creating unbiased pharmacophore models starting from well-refer-
enced experimental complex models such as those deposited in the PDB. The
preliminary validation of the methodology in diverse molecular complexes (pro-
tein–protein, DNA–ligand, enzyme–inhibitor) will be extended further to other
examples, but the results obtained so far already indicate the great versatility of
the GBMP approach. All application examples described in this chapter reveal
the good capabilities of this approach to identify the most relevant host–guest
interaction occurring within the analyzed complexes, indepently of their nature.
GBPM revealed no impediments for its application to both macromolecular and
small organic compound targets. Owing to the large number of GRID probes
available, a notable improvement of the generated pharmacophore models can
be achieved, suggesting also new substituents for known compounds or contrib-
uting to rationalizing their structure–activity relationships. Consequently, the
GBPM approach may be useful not only in the lead identification process but
also in the lead optimization phase.
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Ruth Brenk and Gerhard Klebe

8.1
Introduction

The molecular recognition properties of a binding pocket are determined by the
amino acids forming the cavity. The spatial arrangements of these amino acids
and their physicochemical properties define the shape and the properties that a
ligand has to complement in order to be qualified to bind to the pocket. There-
fore, the structure of the binding pocket can be used to map putative interaction
sites for certain functional groups such as hydrogen-bond donors and acceptors
and hydrophobic features into the binding site. These favorable interactions
sites are also referred to as “hot spots”. Up to now, there has been no method
available to translate these interaction sites directly into chemically accessible
new molecules. An indirect way is to derive a pharmacophore hypothesis based
on the calculated “hot spots”. This pharmacophore is then subsequently used
for virtual database screening or to guide docking of a pre-assembled library. In
addition, “hot spots” can also be used to tailor scoring functions for a specific
target in order to improve their predictive power.

In this chapter, methods to derive “hot spots” and to translate them into real
molecules are introduced. The approach is illustrated by using examples of suc-
cessful protein structure-based virtual screening.

8.2
Calculating “Hot Spots”

Energetically favorable interaction sites in protein binding pockets can be com-
puted and analyzed in terms of so-called “hot spots” of binding. The archetypal
program, still being widely in use is Goodford’s program GRID [1]. GRID em-
beds the protein under consideration into a 3D grid. Subsequently, the interac-
tion energy of a molecular probe is calculated at each grid point with respect to
the surrounding protein atoms applying the distance-dependent functional form
of a force field. Functional groups such as methyl groups as hydrophobic probe
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or carbonyl oxygens as hydrogen-bond acceptor and amine nitrogens as hydro-
gen-bond donor probes can be used, representing the most important pharma-
cophoric properties. Once energy values have been assigned to the individual
grid points according to the energy function, a contour surface can be calculated
and visualized in terms of appropriate energy levels. If negative energy values
are experienced, the areas encompassed by the contour surface represent re-
gions favorably interacting with the selected probe (Fig. 8.1, GRID contour cal-
culated for the binding pocket of carbonic anhydrase). One of the most promi-
nent examples for the successful application of GRID was the development of
inhibitors for sialidase [2]. Through the calculation of “hot spots”, it was pre-
dicted that replacing a hydroxyl group by a basic group should result in more
favorable interactions with the surrounding protein, thus improving the affinity
of the weak lead structure Neu5Ac2en. In consequence, 4-guanidino-Neu5Ac2en
(zanamivir) was designed and subsequently synthesized. This compound turned
out to inhibit sialidase with subnanomolar affinity. It was later launched to mar-
ket as a drug against influenza (Relenza).

SuperStar [3, 4] and DrugScore [5, 6] (Fig. 8.1) are two alternative, popular
programs to calculate “hot spots” in binding pockets. As in GRID, the protein
is embedded into a 3D grid, but different types of functional forms are used for
evaluating the interactions of a probe with the surrounding binding pocket
(Fig. 8.1). SuperStar, a knowledge-based approach, uses information about inter-
molecular interactions observed in the crystal packing of small organic mole-
cules whereas DrugScore relies on knowledge-based potentials assembled from
individual protein–ligand complexes. In SuperStar, relevant composite-crystal
field environments of a particular type of functional group around a central
group of interest, compiled from a large set of small molecule crystal structures,
are mapped on to binding-site exposed residues. Facing such distributions to a
random assembly of contacting groups, SuperStar allows one to estimate the
propensity of finding a particular contacting group next to the central group un-
der investigation. DrugScore uses the annotated information in Relibase [7] and
performs histographic statistics on the contact frequencies of ligand functional
groups in the neighborhood of protein functional groups. By defining an appro-
priate reference state (e.g. the mean distribution of all atom types), some sort of
probability for the formation of ligand-to-protein contacts can be expressed.
These contact preferences can be related to some type of statistical potential that
provides a means of determining how favorably a particular contact can be esti-
mated. Recently, potentials for protein–water interactions have been added to
DrugScore [8]. A comprehensive analysis of crystallographically determined pro-
tein–ligand complexes with Relibase has revealed that in two-thirds of all com-
plexes a water molecule is involved in ligand binding, e.g. by mediating a con-
tact between protein and ligand [9]. Accordingly, tools to predict and analyze the
relevance for water binding sites are crucial for the success of docking tech-
niques or other rational approaches to structure-based drug design. In Fig. 8.2,
the computed “hot spots” using the DrugScore implementation for water con-
tacts are shown for arabinose-binding protein together with a bound sugar. The
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indicated “hot spots” clearly denote water positions which are actually occupied
by interstitial water molecules involved in ligand binding.

A somewhat different approach has been implemented in MCSS (multiple co-
pies simultaneous search) [10]. In this method, up to 5000 copies of a func-
tional group are randomly distributed in the binding pocket and simultaneously
minimized by a force field. The simultaneous optimization is performed in
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Fig. 8.1 Mapping “hot spots” of binding in
the active site of human carbonic anhydrase
II, for orientation the crystallographically de-
termined binding geometry of the inhibitor
dorzolamide is also shown. (a) The putative
hydrogen-bond acceptor properties, calcu-
lated for a carbonyl oxygen probe with the
program GRID (yellow contours indicate fa-
vorable areas) and SuperStar (red contours
depict regions of enhanced propensity); (b)
the isopleths indicate favorable regions as
highlighted by DrugScore of an O.2 (red)
and O.3 (orange) probe; (c) favorable hydro-
gen-bond donor sites determined for an NH

amino group with GRID (yellow) and Super-
Star (red); (d) similar properties indicated by
DrugScore of an N.3 (blue) and N.am (cyan)
probe; (e) “hot spots” for hydrophobic prop-
erties as computed by GRID for the probe
DRY (yellow) and a methyl group in Super-
Star (red); (f) similar properties as high-
lighted by DrugScore of a C.3 (violet), C.ar
(magenta) and C.2 (white) probe. The var-
ious grid points were contoured at a 10%
level above the global minimum in each
map. Reprinted with permission from J.
Med. Chem. 2002, 45, 3588–3602.



such a way that none of the probe fragments experiences any of the others, but
all fragments encounter interactions with the protein binding site residues. The
resulting clusters of probe fragments indicate the most favorable interaction
sites and possible interaction geometries.

8.3
From “Hot Spots” to Molecules

Up to now, there has been no method available which directly translates the
“hot spots” into the chemical structure of real molecules. An indirect way is to
derive a pharmacophore hypothesis for protein structure-based virtual screening
based on the calculated interaction sites. Two widely applied programs for this
task are UNITY [11] and Catalyst [12]. By use of both programs, spheres can be
placed into the binding pocket with the radius (considering an appropriate
search tolerance) adjusted to encompass the underlying “hot spot”. The pharma-
cophoric property of the corresponding “hot spot”, e.g. being a hydrogen-bond
donor or -acceptor or hydrophobic site is subsequently assigned to the sphere.
In addition, the approximate shape of the binding pocket can be considered in
terms of excluded volumes to mimic the protein environment that a ligand is
not allowed to penetrate. Subsequently, the derived pharmacophore can be used
for database screening. In this step, a geometric and chemical mapping be-
tween the assigned tolerance spheres and the compounds stored in a database
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Fig. 8.2 “Hot spots” calculated for water sites with DrugScore
in the binding pocket of arabinose binding protein (5abp).
The DrugScore potential has been contoured at two levels
(cyan/blue) and the crystallographically determined water
molecules are shown as red spheres.



is calculated. Catalyst operates on precalculated multiple conformations of the
small-molecule candidates, whereas UNITY generates them on the fly, starting
with a very fast incipient tweak algorithm to test for crude pharmacophore
matching. An alternative approach to retrieve putative candidate molecules from
a database is the program FeatureTrees developed by Rarey and Dixon [13]. This
method is focused on the comparison of ligands and retrieves by very fast algo-
rithms candidate molecules with topographical similarity to a given lead refer-
ence. The molecules to be compared are described by a tree of knots to which
generic properties such as H-bond donor and acceptor or hydrophobic proper-
ties have been assigned.

Recently, existing docking programs have been extended to consider pharma-
cophore hypotheses during docking. In FlexX-Pharm [14], an extension of the
original FlexX [15], the user has the option to incorporate pharmacophore fea-
tures either as a pre-filter for docking, as a constraint during docking or as a
post-filter to rank and evaluate docking solutions. In the pre-filter mode for
docking, each ligand is checked first in order to estimate whether it can poten-
tially satisfy the pharmacophore hypothesis. Only if this prerequisite is met is
the compound actually docked into the binding pocket. If the pharmacophore is
used as a constraint during docking, only poses in agreement with this hypo-
thesis are stored. Since undesired docking poses are eliminated early on, this fil-
ter step allows new poses to emerge which otherwise would not have been ex-
plored. In the post-filter mode, the ligands are docked unconstrained, but all so-
lutions not in agreement with the pharmacophore hypothesis are subsequently
discarded from the list of putative hits. By using these different options, the
computing time is significantly reduced, poses closer to the experimentally de-
termined binding mode can be generated and better enrichment of known bin-
ders in database searches can be achieved.

PhDOCK [16, 17], an extension of DOCK 4.0 [18], also considers pharmaco-
phores during docking. This enhanced release requires a database storing mole-
cules in a configuration superimposed on the largest common pharmacophore.
Such clusters are composed of different conformers of the same molecule but
they also comprise similar molecules exhibiting the same pharmacophore
(Fig. 8.3). For docking these clusters into the binding pocket, the cavity is filled
with spheres. These spheres are labeled with pharmacophoric properties derived
from a “hot spot” analysis. All members of one cluster are simultaneously
placed in the binding pocket by matching the pharmacophore representing the
cluster with spheres reflecting the protein-based pharmacophore properties [16].
Consequently, all poses obtained are scored separately for each conformer. Only
the best scoring pose of each compound is stored in the final hit list. This pro-
cedure results in reduced computational efforts and better performance with re-
spect to enrichment of known actives is achieved.

All the above-described methods share in common that the user has to select
the calculated “hot spots” to be considered in the pharmacophore hypothesis.
But even without establishing an explicit pharmacophore hypothesis, “hot spots”
can be useful for structure-based drug design.
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One option is the direct docking of ligands on to “hot spot” grids [19]. In a
feasibility study, using AutoDock [20] docking on to grids assigned by Drug-
Score potentials reveals more relevant ligand poses. This strategy is superior to
a simple re-ranking of ligand poses using DrugScore.

If a set of compounds binding to the protein of interest is known, “hot spots”
can be used to tailor a given general purpose scoring function [21]. In this
approach, named AFMoC (adaptation of fields for molecular comparison), Drug-
Score potential fields are generated in the binding pocket. Methodologically the
approach is related to the well-known comparative molecular field analysis tools
CoMFA [22] and CoMSIA [23], but with the important advantage that the protein
environment is explicitly considered. CoMFA and CoMSIA apply grids, assigned
to the field values of a uniform probe, and use a functional form to map the ligand
properties on to these grid points which corresponds either to Lennard–Jones and
Coulomb potentials or uses molecular similarity indices. In contrast, AFMoC
starts with a grid of pre-assigned values. These non-uniform values at the individ-
ual grid point consider the DrugScore potential values computed for various
atoms according to the contact geometries with the surrounding protein environ-
ment. By use of some ligands with known binding mode and experimentally de-
termined binding affinity, the actually placed ligand atoms introduce an affinity-
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Fig. 8.3 Concept of PhDOCK. Conformers of
similar molecules are aligned on the largest
common pharmacophore. The pharmaco-
phore of each cluster is consequently
matched on spheres in the binding pocket
labeled with pharmacophoric properties.

Based on this match a transformation matrix
is calculated and the molecules present in
the cluster are docked into the binding site.
Each molecule present in the cluster is
scored and the best scoring conformer per
molecule is stored in the final hit list.



based weighting of the individual DrugScore potential values [24]. The resulting
interaction fields for the training set ligands are evaluated by PLS. Once such a
comparative molecular field analysis has been established and a QSAR equation
is derived, it can be used to predict binding affinities of novel ligands, e.g. such
as result from a docking run. Accordingly, an AFMoC-derived QSAR model serves
as a tailor-made scoring function that has implicitly been weighted with respect to
“hot spot” data. It has been shown that the tailored scoring function achieves
much better correlations between experimentally determined and computed affi-
nities and possesses superior predictive power in estimating binding affinities
compared with the original general purpose DrugScore [24].

8.4
Real-life Examples

To illustrate how pharmacophore searches can be applied successfully to the dis-
covery of novel ligands, we chose two examples from our own recent work.

The enzyme tRNA–guanine transglycosylase (TGT) catalyzes the complete ex-
change of a base in tRNA [25, 26]. Upon reaction, guanine in the wobble position
of tRNAs with the anticodon sequence GUN is replaced by the modified bases

8.4 Real-life Examples 177

Fig. 8.4 Binding mode of preQ1 complexed with Z. mobilis
TGT. The substrate is intercalated between the hydrophobic
side-chains of Tyr106 and Met260. Specific recognition occurs
via hydrogen bonds towards Asp156, Gln203, Gly230 and
Leu231. Reprinted with permission from J. Mol. Biol. 2004,
338, 55–75.



preQ1. In subsequent reaction steps, preQ1, once incorporated into tRNA, is con-
verted to queuine. In Shigella, the causative agent of shigellosis, the occurrence of
tRNA modified by queuine is a prerequisite for efficient translation of virF, a ma-
jor virulence factor [27]. Mutational studies showed that Shigella flexneri lacking
the tgt gene suffers drastically reduced pathogenicity compared with the wild type
[28]. This prompted us to target TGT in an effort to design new antibiotics against
shigellosis [29]. Since no crystal structure of Shigella TGT is available, the structure
of the Zymomonas mobilis enzyme in complex with preQ1 (Fig. 8.4) served as the
platform for our studies. Sequence analysis has shown that, apart form a replace-
ment of Tyr106 by Phe, all amino acids in the binding pocket are identical with
those present in the S. flexneri enzyme [30]. In addition, we could show that mu-
tating Tyr106 to Phe does not change the kinetic properties [31].

In the first design cycle, pyridazinediones, e.g. 1 (Table 8.1), were discovered
using the de novo design program LUDI [32]. Subsequently, the crystal structure
of the TGT · ligand complex was determined [29]. This analysis revealed that the
discovered lead exhibits a substrate-like binding mode (Fig. 8.5a). Based on
these findings, we focused in a second design cycle on closely related analogs of
the original pyridazinedione skeleton, resulting in a family of imidazole-fused
pyridazinediones such as 2 and 3 [33]. To our surprise, these compounds adopt
a distinct binding mode (Fig. 8.6). Upon ligand binding, the amide carbonyl
group of Leu231 which in all previously determined crystal structures faced the
ligand binding site, is flipped in the opposite direction towards the interior of
the protein. Instead, the adjacent amide NH group of Ala232 is now exposed to
the binding cavity. In addition, an interstitial water molecule (W1) is present
that mediates a contact between the ligand and Ala232.

To exploit this new and unexpected binding mode for drug discovery of
further inhibitors, we derived a protein-based pharmacophore for virtual screen-
ing. In a first step, “hot spots” were calculated in the cavities for both alternative
binding site conformers using DrugScore [6] and SuperStar [3]. To represent the
important properties of putative ligands, a hydrogen-bond donor (N.3 in Drug-
Score and an uncharged amino group in Superstar), hydrogen-bond acceptor
(O.2 and carbonyl oxygen probe, respectively) and a hydrophobic probe (C.ar
probe and aromatic C probe, respectively) were chosen. Representative results
are shown in Fig. 8.5. Superimposing the crystallographically observed binding
modes of the ligands on the interaction sites predicted as favorable shows that
the given properties of the ligands correspond very well to the indicated “hot
spots”. For example, all hydrogen-bond donor groups present in 1 (Fig. 8.5a)
match convincingly with the predicted interaction sites for this type of func-
tional group. One of the carbonyl oxygens of 2 also coincides very well with a
hydrogen-bond acceptor “hot spot” (Fig. 8.5c), whereas the second carbonyl
group is placed in a region not predicted as favorable. An explanation for this
finding is the fact that this group only forms hydrogen bonds to surrounding
water molecules which were not considered in the “hot spot” calculations
(Fig. 8.7). Interestingly, for the position of the nitrogen in ligand 2, interacting
with water molecule W1, the “hot spot” analysis predicts favorable interactions
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for hydrogen-bond donors and acceptors (Fig. 8.5b and c). This is due to the bi-
functionality of the water molecule, which can act as hydrogen-bond donor and
acceptor. This observation is convincingly confirmed by two inhibitors, 6 and 7,
synthesized in our lead optimization program (Table 8.1) [34]. Both compounds
exhibit a binding affinity in the low micromolar range, but 6 exposes a proto-
nated nitrogen function towards the interstitial water molecule, whereas 7 inter-
acts with this water via its basic nitrogen, most likely exposing its acceptor prop-
erties (Fig. 8.8).

The hydrophobic probe highlights an area of the binding pocket where the bi-
and tricyclic inhibitors are actually accommodated with their non-polar ring sys-
tem (Fig. 8.5d).
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Table 8.1 Inhibitors of Z. mobilis TGT

No. Compound

1

2

3

4

6

7



In the following step, the calculated “hot spots” considering various probes
are combined and translated into a pharmacophore hypothesis that serves as in-
put query for a UNITY [11] search. Including all prominent spots would result
in a far too complex pharmacophore model, providing only a small chance of
finding ligands that would fulfil such complex criteria. However, picking too
few spots could result in a very general description which would not be suffi-
cient to describe specific TGT inhibitors. Therefore, a well-balanced hypothesis
has to be established and we focused on key interactions which have been ob-
served repeatedly in previously determined crystal structures of TGT–ligand
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Fig. 8.5 Mapping of putative binding “hot
spots” in the active-site of TGT. For orienta-
tion, the binding geometry of the inhibitor 1
(a) or 2 (b–d), studied crystallographically, is
also shown. (a), (b) “Hot spots” calculated
with DrugScore using a hydrogen-bond donor
probe (N.3), contoured at an 80 (cyan), 84
(blue) and 88% (magenta) level with respect
to the global minimum; (c) “hot spots”

calculated with SuperStar using a carbonyl
oxygen probe, contoured at a propensity level
of 4 (green), 8 (blue) and 10 (red) (a pro-
pensity of 1 corresponds to random occur-
rence); (d) “hot spots” calculated with Drug-
Score using a hydrophobic probe (C.ar), con-
toured at an 89 (magenta), 91 (orange) and
95% (yellow) level. Reprinted with permission
from J. Med. Chem. 2003, 46, 1133–1143.



complexes. The finally established pharmacophore hypothesis is shown in
Fig. 8.9. We hypothesized that all inhibitors require a hydrophobic core struc-
ture to intercalate between Tyr106 and Met260. Furthermore, they have to form
a twinned hydrogen bond to Asp156 and, in addition, a hydrogen bond to either
Gln203 or Gly230. Additionally, a hydrogen-bond donor directly interacting with
Leu231 or either a hydrogen-bond donor or acceptor interacting via the intersti-
tial water molecule W1 with the flipped peptide bond is required. The spatial
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Fig. 8.6 Superposition of TGT 1 (green) and TGT· 2 (gray).
The peptide bond at Leu231 to Ala232 (circle) in the structure
of TGT complexed with 2 is flipped compared with that with
1. The flip rotates the carbonyl group of Leu231 in the oppo-
site direction from the binding site. Instead, the adjacent NH
of Ala232 is now facing towards the ligand. Reprinted with
permission from J. Med. Chem. 2003, 46, 1133–1143.

Fig. 8.7 Part of the crystal structure of TGT · 2. One of the
ligand’s carbonyl groups only forms hydrogen bonds to sur-
rounding water molecules (W3 and W5).



tolerances for the placement of the putative pharmacophore groups were ad-
justed to the size of the underlying “hot spots”. To consider directionality of the
hydrogen bonds, all hydrogen-bond donor and acceptor features were connected
to the corresponding groups in the protein.
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Fig. 8.8 Modeled binding mode of 6 [green (a)] and 7 [orange
(b)]. Ligand 6 exposes a hydrogen-bond donor towards the
water molecule W1, whereas ligand 7 interacts with this water
molecule via a hydrogen-bond acceptor functionality.

Fig. 8.9 Composite protein structure-based
pharmacophore used for virtual screening.
Donor features and their corresponding in-
teraction partners in the protein are colored
blue, acceptor features and their correspond-
ing interaction partners are colored red and
the acceptor/donor feature and the corre-

sponding acceptor/donor site is colored ma-
genta. The hydrophobic feature is colored
green. The interaction to the carbonyl group
of Leu231 is considered alternatively to the
interaction to the water molecule W1. Re-
printed with permission from J. Med. Chem.
2003, 46, 1133–1143.



In the following, this composite pharmacophore was used as input for data-
base searches. As the database of putative candidate molecules we assembled
several hundred thousand compounds offered by commercial vendors. To speed
up the search and to keep control over the search strategy, we followed a hier-
archical protocol with increasingly complex filters (Table 8.2, Screening 1). All
compounds exceeding a molecular weight of 450 Da and comprising more than
seven rotatable bonds were discarded in the first step in order to focus on more
drug- and lead-like compounds. Subsequently, only compounds with a minimal
number of functional groups required to satisfy the pharmacophore were al-
lowed to pass the second filter. As the third step, enhanced consideration of the
above-described pharmacophore was applied. In addition to the requested pres-
ence of appropriate functional groups, it was queried whether these selected
functional groups are also topographically arranged in such a way as to agree
with the spatial geometry of the pharmacophore. This provides a very tight filter
and only about 3300 entries could pass this step. In the next stage, the shape of
the binding site was considered in terms of excluded volumes. After all filter
steps, the original number of compounds was reduced to about 0.1%. The re-
maining compounds were docked by FlexX [15] into the TGT binding pocket in
a pharmacophore-unrestrained fashion. All compounds still satisfying the phar-
macophore hypothesis after docking were subsequently inspected visually. Crite-
ria for purchasing compounds for testing were (a) the overall matching of the
desired hydrogen-bonding network, (b) complementarity between ligand and
protein surfaces in terms of spatial occupancy and matched contacts in hydro-
phobic/hydrophilic surface patches and (c) the absence of any unfavorable inter-
molecular interactions after minimizing the compounds in the binding pocket
using the MAB force field [35, 36]. In total, nine compounds were tested (Table
8.3). All of these compounds showed at least submicromolar inhibition. Three
inhibited the enzyme in the low micromolar range (10, 14 and 15) and two
were even submicromolar inhibitors (8 and 9). Most important for the following
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Table 8.2 Summary of the hierarchical filtering of a database
of small molecules using the pharmacophore described in
Fig. 8.9 (screening 1) and Fig. 8.12 (screening 2)

Filter step Screening 1 Screening 2

No. of
compounds

% No. of
compounds

%

826952 100.00 826952 100.00

1. Rotatable bonds/MW 419737 50.76 419737 50.76

2. Requested number of hydrophobic,
donor, and acceptor properties

168387 20.36 242005 29.30

3. Pharmacophore hypothesis 3 309 0.40 39080 4.73

4. Excluded volumes 872 0.11 620 0.08
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Table 8.3 Compounds selected by virtual screening using the
pharmacophore described in Fig. 8.9 and subsequently tested
for TGT inhibition

No. Compound Ki (�M) a)

8 0.25

9 0.6

10 3.8

11 249

12 156

13 72

14 8.1

15 2.7



lead optimization, our approach using a hierarchical protein-based virtual
screening protocol retrieves compounds originating from different chemical
classes such as pteridines, guanines, hydrazides and pyrazoles. This provides
the greatest opportunities for a successful lead optimization program by struc-
ture-based chemical synthesis.

8.5
Replacement of Active-site Water Molecules

In a second attempt to explore further the recognition properties of the TGT,
we focused on 4-aminoquinazolinones as initial lead structure (e.g. 4 in Table
8.1) [37–39]. Crystal structure analysis revealed that in TGT · 4 the side-chain of
Asp102 is rotated towards the ligand forming a twinned hydrogen bond
(Fig. 8.10). In consequence, the water molecule W3 which was present in the
TGT–1 and TGT–2 (Fig. 8.7) complexes is displaced. In addition, the 2-amino
group of 1 displaces the water molecule W5. These rearrangements attracted
our attention to this part of the binding pocket. The “hot spot” maps for a hy-
drogen-bond donor (N.3) and an acceptor probe (O.2) are shown in Fig. 8.11a
and b. Water molecule W4 is found at the rim of the hydrogen-bond donor area
contoured at a predefined level (Fig. 8.11 a). However, water molecule W3 coin-
cides nicely with the center of a hydrogen-bond acceptor spot (Fig. 8.11 b). In
addition, water molecule W5, which is in hydrogen-bond distance of W3, also
matches convincingly with a hydrogen-bond acceptor spot. Based on this analy-
sis, we concluded that the water molecule W4 is too deeply buried in the pocket
and its position is not easily accessible for ligand donor functional groups. In
contrast, the water molecules W3 and W5 occupy two easily accessible spots fa-
vorable for hydrogen-bond acceptor functionalities. According to these results,
we formulated a modified pharmacophore hypothesis in particular addressing
this part of the binding site (Fig. 8.12). In the above-described pharmacophore
search, no ligands were found which, in addition to the required features, also
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Table 8.3 (continued)

No. Compound Ki (�M) a)

16 37

a) Owing to the elaborate determination of the Ki values, the er-
ror is assumed to be about 20–30% [29]. Data have not been
corrected for competitive and uncompetitive contributions to
inhibition [39].
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Fig. 8.10 Superposition of TGT ·1 (orange li-
gand, gray protein structure) and TGT ·4
(cyan ligand, blue protein structure). Upon
binding of 4, Asp102 rotates towards the

ligand. In consequence, the water molecules
W3 and W4 present in TGT ·1 are displaced.
Reprinted from J. Mol. Biol. 2004, 338, 55–
75, with permission from Elsevier.

Fig. 8.11 Mapping of putative binding “hot
spots” calculated with DrugScore close to
the water molecules W3–W5 in the active-
site of TGT. For orientation, the binding
mode of inhibitor 1 is also shown. (a) “Hot
spots” calculated using a hydrogen-bond do-
nor probe (N.3), contoured at an 80 (cyan),
84 (blue) and 88% (magenta) level with re-
spect to the global minimum. The water
molecules W3–W5 do not coincide with
these spots. (b) “Hot spots” calculated

using a hydrogen-acceptor probe (O.2), con-
toured at an 80 (green), 84 (blue) and 92%
(red) level with respect to the global mini-
mum. The water molecule W3, which is dis-
placed upon rotation of the side-chain of
Asp102, and the water molecule W5 are lo-
cated in a position predicted as favorable for
a hydrogen-bond acceptor. Reprinted from J.
Mol. Biol. 2004, 338, 55–75, with permission
from Elsevier.



placed an acceptor functionality into the acceptor spot areas next to W3 and
W5. In order possibly to retrieve ligands addressing these two spots, it was
therefore important to relax the stringent requirements defined for the previous
pharmacophore hypothesis. In the updated pharmacophore, instead of a
twinned hydrogen bond to Asp156, a single one was considered sufficient. In
addition, a hydrogen bond to Gly230 and a hydrophobic moiety were still as-
sumed as essential binding prerequisites. Accordingly, the novel pharmacophore
hypothesis comprised two additionally defined hydrogen-bond acceptors inter-
acting with Gly104 and Ser103. They were placed to the centers of the “hot
spots” where the water molecules W3 and W5 were crystallographically ob-
served.

Subsequently, the new pharmacophore hypothesis was used for virtual screen-
ing. The same strategy involving a series of hierarchical filters, as described
above, was applied. The statistical results of this second search are listed in Ta-
ble 8.2 (Screening 2). In total, about 700 molecules could pass all filter steps.
After docking with FlexX and visual inspection, six compounds were selected
for testing their inhibitory potency (Table 8.4). All of them inhibited TGT, at
least at the submillimolar level; compounds 19–22 were the most potent com-
pounds with inhibition constants in the two digit micromolar range. All re-
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Fig. 8.12 Protein structure-based pharmaco-
phore derived for ligands which should dis-
place either water molecule W3 or W5. Do-
nor features and their corresponding interac-
tion partners in the protein are colored blue
and acceptor features and their correspond-
ing interaction partners are colored red. The

hydrophobic feature is colored green. The in-
teractions to the carboxylate group of
Asp156 and to acceptor groups Acc2a and
Acc2b are requested in the search query as
alternative options. Reprinted from J. Mol.
Biol. 2004, 338, 55–75, with permission from
Elsevier.



trieved ligands, except 17 and 20, exhibit a low Tanimoto similarity index [40,
41] taking the original lead compounds 1 and 2 as references. Within this simi-
larity metric, the newly discovered hits can therefore be classified as “dissimilar”
or “novel”. Unfortunately, up to now we have not succeeded in determining a
crystal structure with e.g. 21. Accordingly, we assume a binding mode as pro-
posed by docking which is shown in Fig. 8.13 a. The ligand’s nitro group is
hosted in the area that was previously occupied by both waters W3 and W5.
Compared with the TGT inhibitors studied earlier, 21 is rotated by 90� with re-
spect to its longitudinal axis in the binding pocket (Fig. 8.13 b). As a conse-
quence, in this orientation, the lower right-hand part of the binding pocket, ad-
jacent to Ser103 and Gly104, is completely occupied. Through decoration with
substituents in an ortho or meta position with respect to the nitro group at the
central phenyl ring, regions of the binding pocket so far unexplored can now be
addressed. These considerations make the latter lead a valuable candidate for
further optimization.
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Fig. 8.13 (a) Best docking solution (rank 1)
for ligand 21. The ligand exposes its nitro
group in a region predicted to be favorable
for hydrogen-bond acceptors by DrugScore
(“hot spots” contoured at an 80 (green), 84
(blue) and 92% (red) level). (b) Sketch of
the binding mode of 21. Compared with the
so far known binding modes of TGT inhibi-

tors (gray), the compound is rotated 90�
with respect to its longitudinal axis. In con-
sequence, the previously unoccupied lower
right part of the binding pocket towards
Ser103 and Gly104 is now addressed. Re-
printed from J. Mol. Biol. 2004, 338, 55–75,
with permission from Elsevier.
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Table 8.4 Compounds selected by virtual screening using the
pharmacophore described in Fig. 8.12 and subsequently
tested for TGT inhibition.

No. Compound Tanimoto index to 1 Tanimoto index to 2 Ki (�M) a)

17 0.39 0.21 403± 33

18 0.27 0.22 158± 17

19 0.29 0.24 58± 15

20 0.45 0.24 31± 5

21 0.22 0.23 27± 3

22 0.19 0.29 15± 1

a) Owing to the elaborate determination of the Ki values, the er-
ror is assumed to be about 20–30% [29]. Data have not been
corrected for competitive and uncompetitive contributions to
inhibition [39].



8.6
Conclusions

Structure-based virtual screening has been established as an alternative tool to
high-throughput screening for the discovery of novel leads. In particular, owing
to early access of relevant crystal or NMR structures of putative drug targets, ra-
tional structure-based design methods are increasingly applied in the drug de-
velopment process. Of special interest in this context is a detailed analysis of
the binding pocket of the target protein. In principle, the residues exposed to
the binding pocket define the shape and chemical properties of putative ligands
to be accommodated by the target protein. Using different molecular probes,
the binding pocket can be analyzed in terms of “hot spots” of binding. They in-
dicate in a very generic way the required physicochemical properties, e.g. where
in space a hydrogen-bond donor or acceptor facility is necessary to achieve suc-
cessful binding. However, in a non-trivial step this information displayed by the
ensemble of various “hot spots” (also termed protein-based pharmacophore) has
to be translated into molecules that satisfy this hypothesis. This latter aspect
can currently only be resolved indirectly by screening large amounts of pre-gen-
erated candidate molecules and assessing whether they are in agreement with
the generic pharmacophore hypothesis. A much more efficient way would be to
assemble directly candidate molecules de novo considering the constraining con-
ditions of the generic pharmacophore. However, such an approach requires a
better understanding of how to translate “hot spots” directly into chemistry. It is
hoped that future methodological developments will provide efficient solutions
to this as yet unresolved issue.
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9.1
Introduction

Virtual screening is being increasingly used to prioritize compounds for biological
testing in pharmaceutical lead discovery programs. 2D methods such as similarity
searching and 3D methods such as pharmacophore mapping and ligand docking
are routinely used for virtual screening of corporate databases. Currently, struc-
ture-based methods (e.g. docking) for virtual screening of corporate libraries, ex-
ternal compound collections and virtual compounds are relatively slow.

Pharmacophore-based screening has become common in the field of computer-
assisted drug design (CADD). The success stories achieved with traditional phar-
macophore modeling have led many groups to look at ways of describing mole-
cules in a similar way without the need for alignment or derivation of single phar-
macophores. The pharmacophore represents the key elements of a protein–ligand
interaction and thus a pharmacophore-based descriptor attempts to describe mol-
ecules based on their biology rather than their chemistry. The standard 2D simi-
larity measures based around daylight fingerprints or ISIS keys group compounds
are based on common chemistry. Pharmacophore-based descriptors attempt to
move away from this chemistry-biased representation. Compounds similar in a
pharmacophore space do not need to look similar in the chemical space.

The pharmacophore concept is based on the kind of interactions observed in
molecular recognition: hydrogen bonding, charge-charge and hydrophobic inter-
actions. A pharmacophore is a set of functional group types in a spatial arrange-
ment that represents the interactions made in common by a set of small ligands
with a protein receptor. The pharmacophore-based screening methodology can be
used in cases where only the active ligands are known, without any knowledge of
the X-ray structure of the protein/enzyme to which it binds and can be applied to
large datasets in high-throughput screening (HTS) applications.

Pharmacophore fingerprints represent an extension of this approach whereby
a basis set of pharmacophores is generated by enumerating all pharmacophoric
types with the corresponding distances between them within a specified range.
The 3D fingerprint for a molecule is defined as the collection of all combina-
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tions of three pharmacophoric features (three-point) and four pharmacophoric
features (four-point) in 3D space for all conformers. Each multiplet is character-
ized by a set of feature types and the corresponding inter-feature distances. The
concept has been described previously [1–7] and applications to SAR have been
explored in atom-paired descriptors [8].

9.2
Applications of 3D Pharmacophore Fingerprints

The use of 3D pharmacophore fingerprints in CADD applications can be
broadly classified into the areas of design of combinatorial focused/diverse li-
braries, analyzing ligand–protein interactions and virtual HTS (vHTS) and pro-
tein selectivity.

9.2.1
Focused/Diverse Library Design Using Pharmacophore Fingerprints

Pickett and co-workers described pharmacophore-derived query (PDQ) as a novel
methodology for diversity analysis based on three-point pharmacophores, ex-
pressed by a compound, as a descriptor [3]. The method considers both shape
and property for diversity calculations and allows for conformational flexibility.
The method uses 3D conformers to account for shape and important drug–recep-
tor interactions such as hydrogen-bond donor, hydrogen-bond acceptor, acid, base,
aromatic center and hydrophobe to account for property. The distance ranges (2–
24 Å) covering most expected pharmacophore sizes were used. Pickett et al. con-
sidered the conformational flexibility using the ChemDBS-3D search engine. The
PDQ method profiles the final structures of the library in 3D. This also makes the
technique suitable for analyzing compound collections, which have not been con-
structed in a combinatorial sense for, e.g., corporate databases or collections of
compounds available for purchase. The method can also be used as a preliminary
design filter on building blocks or derivatives of the building blocks.

The DIVSEL program was developed by Pickett et al. for combinatorial re-
agent selection using three-point pharmacophores as the descriptor for similari-
ty calculations [2]. The algorithm starts by selecting the compound most dissim-
ilar to the others in the set and then iteratively selects compounds most dissimi-
lar to those already selected. DIVSEL was used to select a set of carboxylic acids
from a collection of 1100 monocarboxylic acids for an amide library, based on
the pharmacophoric diversity of the products. Eleven diverse amines were se-
lected based on pharmacophoric diversity. A virtual library of 12100 amides was
constructed from the 11 amines and 1100 carboxylic acids. The DIVSEL pro-
gram used the pharmacophore fingerprints for the product virtual library to se-
lect a diverse set of the carboxylic acids. The products of 90 acids with the 11
amines selected with DIVSEL covered 85% of the three-point pharmacophores
represented by the entire 12 100 compound virtual library.
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Davies and Briant proposed a procedure for selecting reagents that exhibit
most of the pharmacophores exhibited by the entire set of molecules based on
their frequency in a set of combinatorial products chosen to maximize the num-
ber of different three-point pharmacophores covered [9]. Several groups have de-
veloped approaches for combinatorial reagent selection by coupling various
pharmacophore diversity-based scoring functions with stochastic [10, 11] and ge-
netic algorithms [12] using three- and four-point pharmacophore fingerprints
[13, 14]. McGregor and Muskal used PharmPrint fingerprints [5] and principal
component analysis for the analysis and design of virtual combinatorial libraries
using common scaffolds and building blocks [6].

Mason et al. [15] described a method for measuring molecular similarity and
diversity using four-point 3D multiple potential pharmacophores and a modified
similarity measure for application to ligand–ligand and ligand–receptor interac-
tions. The use of four- instead of three-point pharmacophores added to the
shape information and resolution, including the ability to distinguish chirality.
This method was applied in the design of combinatorial libraries for 7-trans-
membrane G-protein-coupled receptors around a “privileged” substructure
where, in a four-point pharmacophore, one of the points was forced to be a
“special” feature associated with the “privileged” substructure. This allowed for
the design of libraries that optimized both the coverage of pharmacophoric
shapes found in the known active ligands and exploring new diversity with the
option of focusing around the “privileged” substructure.

9.2.2
Analyzing Protein–Ligand Interactions Using Pharmacophore Fingerprints

When a protein X-ray structure is available, the Design in Receptor [13, 16]
(DiR Chem-X module; Oxford Molecular) method utilized both pharmacophore
and shape information obtained from X-ray structures of proteins. The func-
tional groups present in the binding sites were mapped and complementary fea-
tures were placed within the binding site. A pharmacophore fingerprint based
on these complementary features was then calculated. Compounds were docked
into the binding site and the docked orientations were scored, based on the
number of pharmacophore hypotheses that they matched. Docked orientations
that have unfavorable steric contacts with the protein were rejected. Mason and
Beno [13] used DiR to rank combinatorial reagents for a library based on the
Ugi condensation reaction [17] for the factor Xa binding site. Using four-point
pharmacophore keys, Mason et al. [15] addressed the issue of enzyme selectivity
for thrombin, factor Xa and trypsin. Receptor similarity based on the number of
common four-point pharmacophore keys for each ligand–receptor pair seemed
to enhance the resolution for enzyme selectivity compared with three-point
pharmacophore keys.

Deng et al. [18] recently described an approach to representing and analyzing
3D protein-ligand binding interactions. The Structural Interaction Fingerprint
(SIFt; see also Chapter 10) method represents a ligand by the interactions it un-
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dergoes in the binding site of a protein. Using seven bits per binding-site resi-
due to represent seven different types of interaction, interaction fingerprint
translates 3D structural binding information from a protein–ligand complex
into a 1D binary string. Although this requires knowledge of the binding mode
of each of the ligands with a common protein, the method has been used in
post-processing the output from a docking study and as a filter during a virtual
chemical library screening process. The SIFts were clustered using a hierarchi-
cal clustering algorithm and Tanimoto similarity coefficient for a set of ligands
for a particular protein. This allowed the ligands to be grouped into similar
binding modes and the crystallographically observed binding mode was identi-
fied. The SIFt method also demonstrated a good database enrichment perfor-
mance in a virtual library screen for p38 inhibitors, outperforming the scoring
functions ChemScore [19] and PMF [20]. More recently, Chuaqui et al. [21] in-
troduced interaction profiling (p-SIFt) for the analysis of protein–inhibitor com-
plexes. They used p-SIFts as a target-specific scoring function by comparing the
p-SIFts of compounds with the target-specific group of active inhibitors. This
virtual screening method was applied to p38 and CDK2. The authors noted that
this methodology might miss molecules with novel binding modes compared
with the reference inhibitor in a virtual screening experiment. On the other
hand, p-SIFts can be used to identify molecules with novel binding modes by
looking for binding modes dissimilar to the known inhibitors. Based on analysis
of ~90 known X-ray crystal structures of protein kinase–inhibitor complexes
using SIFt, the proteins were classified into three clusters (p38, CDK2 and other
ATP-like molecule-bound clusters). Further, using p-SIFts, the authors were able
to show the selective differences in the interaction patterns between these clus-
ters of kinases.

Sharing the basic premise of the above-mentioned SIFt method, Kelly and Man-
cera [22] developed an expanded fingerprint method for post-processing in silico
docking and automated ligand generation data. Their method extends SIFt by re-
presenting the interactions the atomic level as opposed to the residue level and in-
cluding measures of the strength of the interactions or their geometric grouping.
Classifying automated ligand generation output on the basis of their binding
modes with a target protein allowed for both the identification of ligands sharing
similar binding modes to known active compounds and the filtering out of those
ligands demonstrating unfavorable binding modes. These expanded methods
were applied to the post-processing of binding poses generated in a docking study
for 220 proteins and to the analysis of ligands generated by an automated ligand
generation algorithm for the anthrax edema factor.

9.2.3
Virtual High-throughput Screen (vHTS) and Protein Selectivity

The Fingerprint-based Lead Identification Protocol (FLIP) [23] uses the informa-
tion about the known or potential active site of a protein to data mine compound
collections to select compounds that are likely to bind to the defined active site.
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Underlying FLIP is the generation of interaction fingerprints that converts 3D
structural binding information into a 1D binary string. Each compound in the col-
lection is also converted to a multiconformer-based 1D binary string. The hits are
identified by a similarity coefficient between the fingerprints of the active site and
each molecule in the collection. FLIP uses LUDI [24, 25] technology to model pro-
tein–ligand interactions through the use of interaction sites based only on the pro-
tein active site information. The possible features considered are negative charge,
positive charge, negative ionizable, positive ionizable, hydrogen-bond donors and
projection point, hydrogen-bond acceptors and projection point, ring aromatic and
projection point and hydrophobic groups. The features present in the 3D pharma-
cophore fingerprint uses catFeatures as implemented in the Catalyst software [26].
Features and inter-feature distances feature files generated by catFeatures are
mapped to a grid to generate a 3D fingerprint file. Figure 9.1 shows an example
of mapping a three-point feature to a grid.

The three features F1, F2 and F3 from a molecule form a triangle and the
three sides of this triangle are d1 (F1–F2), d2 (F2–F3) and d3 (F1–F3) with d3 >
d2 > d1. This information is mapped on to a grid. First F1 is placed at the ori-
gin (0,0) since it is the feature at which the minimal and maximal feature dis-
tances meet. F2 is the feature of minimal distance from feature F1 and lies on
the X-axis (0,A). Once the coordinates of F1 and F2 have been assigned, it is
easy to extrapolate the coordinates for F3 (B,C). This is represented by the phar-
macophoric index P = F (F1,F2,F3,A,B,C).

In the Cerius2 [27] modeling package users are able to select different binning
schemes. In the current implementation, we have six different types of binning
schemes for three-point/four-point pharmacophores: (1) uniform bins, (2) user-de-
fined bins, (3) geometric progressions, (4) exponential progressions, (5) arithmetic
progressions and (6) overlap bins. The uniform binning scheme is straightforward
based on intuition and its implementation is very easy. However, this simple bin-
ning scheme suffers from some notable problems. The problem most often seen
is that smaller grid intervals around the distances of interest are not permitted ow-
ing to the constraint of uniformity. Another problem often seen is that two very
similar pharmacophore keys may be treated as two distinct ones and two distinct
pharmacophore keys might be treated as the same pharmacophore. The former
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situation could happen when two pharmacophore keys with very similar edge dis-
tances happen to fall either side of a bin boundary. The latter situation would hap-
pen when the grid resolution is rough. Such problems suggest that the non-reg-
ular and overlap binning schemes are necessary. The non-regular binning scheme
would allow more granularity around the distances of interest for any specific
problems. The functionality of the overlap bin scheme would allow the elimina-
tion, or at least reduction, of edge effects in which two pharmacophores with very
similar edge distances that happen to fall either side of a bin boundary are cur-
rently considered to be different.

The 3D fingerprints generated can be in either binary or non-binary form.
The binary fingerprint maps the presence or absence of a particular three- or
four-point pharmacophoric feature. A non-binary fingerprint, in addition to the
presence or absence of a fingerprint, also keeps track of the occurrence counts
of the fingerprints. By recording the total occurrence of each fingerprint over
the conformations, comparisons between molecules may be more discriminat-
ing. It is possible to edit manually the interaction map generated by LUDI to re-
move any “noise” and edit some of the interaction site definitions. Either the
edited interaction map can be used “as is” or further clustering of the interac-
tion sites can be done. The clusters can also be edited and the user can reassign
interactions points to other clusters. If the interaction sites are clustered then
the cluster centers are used to represent the interaction map. Hence either all
the interaction site features or the cluster center features in the active site can
be used to represent the receptor interaction map. The LUDI interaction map is
then converted to a Catalyst feature file. Every possible combination of three fea-
tures (three-point) and four features (four-point) and their corresponding inter-
feature distance is considered. This is then mapped to a grid and a 3D finger-
print file for the receptor active site is generated.

The source of the compound collection could be varied, such as corporate collec-
tion, combinatorial libraries and virtual compound collections. Using a standard
SD/SMILES file for a given collection of compounds, a multi-conformer Catalyst
database is constructed. The time-consuming step in the FLIP protocol is the con-
struction of Catalyst databases. However, with the Linux OS version of Catalyst,
database construction is significantly faster on a Linux cluster. The program Cat-
Features, in the Catalyst environment, is used to identify the features present in
the molecules. Once the features have been identified, a module within the soft-
ware Cerius2 is used to construct the fingerprints for all the molecules as de-
scribed above [27]. For a given molecule and for all the conformations of the mol-
ecule, every possible combination of three features (three-point) and four features
(four-point) and their corresponding inter-feature distance is considered. This is
then mapped to a grid and 3D fingerprint for the molecule is generated. Figure
9.2 illustrates the steps and programs required to calculate 3D/4D fingerprints
for a library or any set of molecules in an SD or smiles file format.

The 3D fingerprint for the receptor is compared against the 3D fingerprint
for each molecule in the Catalyst database to select the top percentage of hits.
There are two possible ways of comparing 3D fingerprints:
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1. Compute similarity coefficients (Tanimoto, Dice, Ochia, Hamming) between
the active site fingerprint and the fingerprint for each molecule in the Cata-
lyst database. The top N% of compounds can be selected by ranking the com-
pound collection in descending order based on the similarity coefficient.

2. Another technique uses the fingerprints OnBits metric for comparing 3D fin-
gerprints. It is based on generating a “modal fingerprint” for a set of N mole-
cules, in which a bit is on if it is present in at least one molecule in the set.
The modal 3D fingerprint of the compound collection (candidate library) is
compared with the modal fingerprint of the receptor active site (reference li-
brary), reporting the number of on bits in each library, the number of com-
mon bits, the number of on bits in the candidate library not present in the
reference library and the number of on bits in the reference library not pres-
ent in the candidate library. This method allows one to list the molecules in
the candidate library with on bits present in the reference library and to select
the top N molecules from the candidate library with the highest number of
common bits with the reference library.

The first method used a similarity metric to select the top percentage of hits
and the second method does the selection based only on number of common
pharmacophores between the receptor active site fingerprint and the 3D finger-
print for compounds in the virtual library. Both analysis techniques are extreme-
ly fast. One of the major advantages of FLIP technology is its throughput.

9.2.3.1 Application of FLIP Technology
We present the data for the application of FLIP as a virtual screening tool to
identify the actives of fibroblast growth factor (Fgf) receptor (pdb code: 2FGI)
[28] that were seeded in a virtual library of random molecules. The FGF recep-
tor is a protein tyrosine kinase. The active site is the hydrophobic ATP-binding
site with key hydrogen-bonding interactions. The conserved Lys514 moves sig-
nificantly upon ligand binding to provide access to an adjacent pocket that can
be used to design selective molecules. The active ligands for FGF are shown in
Fig. 9.3.
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The Advailable Chemicals Directory (ACD v. 2000-1, Molecular Design, San
Leandro, CA, USA) was first filtered in order to eliminate chemical reagents
[29, 30], inorganic compounds and molecules with unsuitable molecular weights
(< 250 or > 550). Out of the 80000 remaining molecules, the 1000 most diverse
structures using the maxmin algorithm in Cerius2 [27] were selected and their
3D coordinates were generated using Corina [32]. Hydrogen atoms and Gastei-
ger–Marsili [31] atomic charges were then added using Cerius2 [27]. The known
active ligands for FGF (Fig. 9.3) were prepared using the procedure described
above starting from 2D ISIS structures. Special care was taken to retain the correct
ionization states of ionizable groups (amines, amidines, carboxylic acids, etc.) at a
physiological pH of 7.4. These new active structures were then individually added
to 1000 random molecules previously selected to generate a virtual library.

The parameters that were varied in order to study their effects on data mining
of the active molecules included (1) number of conformations of virtual com-
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pounds, (2) cluster center feature versus all features for the interaction site
model, (3) binary versus non-binary fingerprints and (4) similarity coefficients.
Figure 9.4 illustrates the protocol and total schemes generated by using differ-
ent combinations of the above-mentioned factors. A default grid size of 10 Å
with a grid space of 2 Å and a minimum separation of 2.5 Å between the phar-
macophoric features was used.

In order to study the effect of number of conformations for each molecule in
the Catalyst database on the FLIP protocol, four Catalyst databases with differ-
ent maximum numbers of conformations, 50, 100, 250 and 600, were generated
for the virtual library. Conformations for ligands in Catalyst database format
were generated using the FAST method of catConf (built-in Catalyst conformer
generation engine). The binary and non-binary 3D fingerprints of the virtual li-
brary were generated. For the protein, the interaction map was generated and
manually edited to remove interaction points outside the binding cavity of the
ligand. The interaction site was clustered using a hierarchical clustering meth-
od. Both clustered and non-clustered interaction maps were used to generate a
binary and non-binary 3D fingerprint. Similarity coefficients between the en-
zyme and the virtual library were calculated. The similarity coefficients calcu-
lated included Tanimoto, Ochiai, Dice and Hamming.

The Ochiai similarity coefficient with 250 maximum conformations provided
the best retrieval rates of the actives from the virtual library (Fig. 9.5).

The non-binary all feature combination of the 3D fingerprint and interaction
feature was able to retrieve ~90% of the actives on screening 20% of the data-
base. The Ochiai coefficient was slightly better than Tanimoto and significantly
better than Dice and Hamming in retrieving actives. All features for the enzyme
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active site in combination with the non-binary 3D fingerprint ranked actives
higher than the random compounds in the virtual library. The combination of
features and 3D fingerprints such as cluster center–binary and all feature–bina-
ry perform were slightly worse (70% of the actives on screening 20% of the da-
tabase) than the cluster center–binary in providing enrichment. The combina-
tion of cluster center–non-binary is significantly lower in retrieving actives (60%
of the actives retrieved on screening 20% of the database).

In this exercise for the FGF target on the seeded database, we retrieved 70–
80% of actives by screening 20–30% of the database. The best combination for
retrieving maximum actives when 5% of the database was screened was “non-
binary–all feature–Ochiai similarity coefficient”. The effect of conformations is
dependent on the flexibility of the molecules in the database. Based on our anal-
ysis, the maximum number of conformations set to 100 was sufficient for re-
trieving 70–80% of the actives. The hit list is 12–16 times enriched with respect
to random selection from the database on screening only 5% of the database.

This methodology can also potentially be used for addressing the issue of pro-
tein selectivity. The advantage of FLIP is that comparisons of active sites can be
made without prior alignment of the active sites. The 3D fingerprints for the ac-
tive sites of proteins can be compared through similarity coefficients to identify
proteins that may or may not be homologous in their sequence, but may have
similarities in their 3D structure. Also, by generating a similarity matrix with
the protein targets as columns and molecules as rows, one can potentially ad-
dress the issue of selectivity against an enzyme class.

Preliminary data on the selectivity issue are shown in Fig. 9.6. The virtual li-
brary comprised 1000 molecules from ACD (ACD v. 2000-1, Molecular Design)
as described previously. Ten actives for FGF and CDK2 proteins were added to
the random molecules to generate the virtual library for screening. The goal of
the experiment was to isolate selectively FGF actives from the virtual library
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Fig. 9.5 Hit rates for FGF using the Ochiai similarity coeffi-
cient with the maximum conformers parameter set at 250.



using FGF as the target protein. Using the non-binary–all feature combination
along with Ochiai coefficient and 250 maximum conformers, the virtual library
was prioritized and the actives for FGF and CDK2 were identified. The enrich-
ment data are shown in Fig. 9.6. It can be seen that when FGF is the target pro-
tein, the rates of retrieval of CDK2 ligands using 3D fingerprints was similar to
random selection of these actives. However, using the FGF as the target protein,
90% of the FGF actives were retrieved on screening 20% of the database. Stud-
ies are ongoing in this area to validate further some of the initial findings. Ma-
son et al. pointed out in that four-point fingerprints were more discerning in
identifying ligand–protein selectivity [15]. Using four-point fingerprints in the
FLIP protocol may increase the information content in the fingerprints.

Some initial studies using a shape-based filter seemed to increase the hit
rates in FLIP (unpublished data). This is not surprising as the conformers/mol-
ecules that do not fit into the active site are filtered out. This perhaps increases
the “signal-to-noise” ratio. FLIP can also potentially be used as a preprocessor to
a more time-consuming docking-based virtual screening. FLIP combined with a
2D descriptor-based sequential screening method has been shown to increase
significantly the hit rates of actives in a virtual screening experiment [23, 33].
This seems to indicate that FLIP can be used for “scaffold” identification fol-
lowed by 2D methods for exploring regions around the active scaffold(s).

9.3
Conclusion

With increasing numbers of X-ray structures being solved, the 3D information can
be exploited for ligand design and optimization. There is a need for fast methods
for structure-based virtual screening. The recent use of machine clusters and port-
ing of software codes to Linux and Windows platforms has contributed to a signif-
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Fig. 9.6 Retrieval rates using three-point fingerprints for FGF
and CDK2 actives using FGF as the target protein.



icant speeding up of conformer database building and virtual screening using
docking and pharmacophore based screens. An alternative method for struc-
ture-based virtual screening is the use of pharmacophore fingerprints. FLIP can
be used for the rapid identification of leads from a database for HTS. The speed
of this method (2–3 s per molecule) is an obvious advantage. It can be used on a
protein target for which either a crystal or NMR structure or homology model of
the protein is available. The FLIP methodology relies on commonality between
fingerprints of the active site and virtual library compounds. This can be used
as a pre-filter to a more time-consuming docking study.

3D fingerprints are very easy to compute and as they are computed in dis-
tance space there is no dependence on target alignment. Hence this methodolo-
gy can be used for the rapid virtual screening of compounds and to compare
hits for related targets. This provides us with a tool to compare both related and
unrelated proteins that may have some similarities in their active site. For ex-
ample, in a virtual screening experiment, a prioritized hit list for a protein ac-
tive site can be compared with the prioritized hit list for the enzyme implicated
in some side-effects or metabolism. Similarity matrices generated for a panel of
related enzymes may potentially be used to address issues of selectivity early in
the drug discovery process.

The hits identified by screening a small percentage of the database can be fol-
lowed up using 2D methods and/or 3D pharmacophore-based further explora-
tion of the database to retrieve more actives in a sequential screening fashion.
The goal is to minimize the number of compounds screened and maximize the
number of actives retrieved at the end of the screening rounds such that the re-
levant chemical space is explored with an optimal use of resources.
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Juswinder Singh, Zhan Deng, and Claudio Chuaqui

10.1
Introduction

Structure-based drug design is a critical component to lead discovery and opti-
mization within the pharmaceutical industry. Nowadays, an increasing number
of drug targets are amenable to structure determination using crystallography
and NMR analysis and the past decade has witnessed an explosion in the num-
ber of three-dimensional protein–small molecule structures from both experi-
mental and in silico approaches. With the recent development of high-through-
put X-ray crystallography, the total number of structures will grow at an even
greater rate. In parallel with the growth of experimentally determined struc-
tures, a plethora of structural information is also being generated in the rational
drug discovery process. A significant challenge exists in the industry to leverage
better this wealth of information.

The optimization of a small molecule at its binding site requires a detailed un-
derstanding of the intermolecular interactions within the protein–small molecule
complex. Visual inspection using computer graphics is powerful at analyzing
small numbers of complexes, but it becomes intractable when the number to be
analyzed is very large, as is the case of the results generated from virtual library
screening. The use of scoring functions to evaluate the energetics and rank li-
braries of virtual compounds is the primary solution to filtering large datasets.

The protein kinase family is emerging as an exciting class of targets for drug
discovery [1]. Protein kinases play a pivotal role in control of cellular signaling
and are involved in proliferation, differentiation and metabolism. Aberrant sig-
naling of protein kinases has been identified in a wide range of diseases includ-
ing cancer, inflammation and neurodegeneration [2, 3]. The protein kinase fami-
ly exemplifies the challenges faced with the large amount of structural data
being generated not only on specific drug targets, but also at the gene family
level [4]. The first crystal structure of a protein kinase was solved in 1991 of the
cAMP-dependent Ser/Thr protein kinase in complex with a peptide inhibitor
and ATP [5]. Since then, over 120 structures of complexes have been deposited
in the public databanks in complexes with small molecules bound and probably
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a much larger number of structures are available within pharmaceutical compa-
nies.

The large amount of complex structural information requires a new method
to help us analyze better the binding interactions between proteins and ligands.
Ideally, such a new method should be able to facilitate the following tasks: (1)
data visualization, to allow easy interpretation of the binding interactions; (2)
data organization, to organize and cluster the structures in a meaningful way;
(3) data analysis, to allow the comparison and profiling of the binding interac-
tions in different structures; and (4) data mining, to help search for structures
that contain key interactions or specific features. In addition, it is desirable that
the method be simple and generic.

In this chapter, we describe a simple and robust approach for representing
and analyzing three-dimensional protein–ligand complexes called SIFt (Structur-
al Interaction Fingerprint) [6, 7]. We will show how this method can be applied
to organizing and analyzing the structural information within the protein kin-
ase family and also how this can be applied to virtual screening for inhibitors.

10.2
How to Generate a SIFt Fingerprint

A structural interaction fingerprint is a 1D binary representation of the interac-
tion patterns from a 3D protein-inhibitor complex. The fingerprint representa-
tion of the interaction patterns is compact and allows for rapid clustering and
analysis of massive numbers of complexes.

The first step in the construction of a SIFt interaction fingerprint is to identi-
fy a list of binding site residues that are common in all complex structures
being studied (Fig. 10.1). Here, the ligand binding site is defined as the union
of all the residues that are in contact with any ligand molecules in any of the
structures in the group. The resulting panel of ligand binding site residues,
which act as a mask covering all of the interactions occurring between the pro-
tein and the ligands, is then used as the common reference frame to construct
the interaction fingerprints.

For a group of structures involving the same target protein (e.g. docking re-
sults), the ligand binding site is defined as the list of residues comprising the
union of all residues involved in ligand binding over the entire library of struc-
tures. For the protein kinase–ligand complex structures, however, as the target
proteins involved are different, a sequence alignment of the protein binding
sites is needed which can be based on sequence and/or structural information.

After all the ligand binding site residues have been identified and all the pro-
tein–ligand intermolecular interactions have been calculated, the next step is to
classify these interactions. By default, seven different types of interactions occur-
ring at each binding residue are extracted and classified using the programs
AREAIMOL [8] from the CCP4 suite [9] and the hydrogen-bonding program
HBPLUS [10]. They include (1) whether or not it is in contact with the ligand;
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(2) whether or not any main-chain atom (MC) is involved in the contact; (3)
whether or not any side-chain (SC) atom is involved in the binding; (4) whether
or not a polar interaction is involved; (5) whether or not a non-polar interaction
is involved; (6) whether or not the residue provides hydrogen bond acceptor(s);
and (7) whether or not it provides hydrogen-bond donor(s). By doing so, each
residue is represented by a seven-bit-long bitstring. The whole interaction fin-
gerprint of the complex is finally constructed by sequentially concatenating the
binding bitstring of each binding site residue together, according to ascending
residue number order. Therefore, interaction fingerprints are of the same length
and each bit in the fingerprint represents the presence or absence of a particu-
lar interaction at a particular binding site.

Our current implementation of SIFt uses seven bits for each binding site resi-
due, representing seven different types of interactions. The richness of informa-
tion can be improved by incorporating more bits representing other types of
binding interactions, using sub-residue portions instead of the whole residue as
the basic unit, taking solvent molecules into consideration or substituting the
binary bits with scaled numerical data that reflect the strength and energetics of
the interactions. Such an enriched SIFt provides a “higher resolution” picture of

10.2 How to Generate a SIFt Fingerprint 209

Fig. 10.1 The procedure used in the genera-
tion of the SIFt fingerprint. (a) 3D binding
site of a kinase with a small molecule inhibi-
tor bound. (b) sequence of the positions in
the binding site in contact with the small
molecule, together with their location in the
structure of the kinase (g-loop and 3 to 4).
Each binding site position is then repre-
sented by a bitstring, with each bit

switched to “on” depending on whether it is
involved in a contact, whether the contact is
with the main chain (MC) or side-chain (SC)
of the protein and if the interaction is polar,
apolar, hydrogen-bond acceptor/donor. (c)
Concatenation of all bitstrings for each bind-
ing site residue. This process is repeated for
all ligands.



the complex. On the other hand, in situations where computational speed is a
critical issue, we may construct “lower resolution” SIFts using fewer bits.

10.3
Profile-based SIFts

We have developed a profile-based approach termed p-SIFt [7] that enables us to
describe the conservation of interactions between a set of protein–ligand recep-
tor complexes. The use of profiles provides a sensitive means to compare and
contrast multiple inhibitors binding to a drug target. A structural interaction
fingerprint profile (p-SIFt) represents the degree to which interactions are con-
served across a set of ligand–receptor complexes. The p-SIFt, P(r), is derived
from an array, denoted below as b, of SIFt patterns and its derivation from a set
of SIFts is shown in Fig. 10.2.

The array has a length N for the total number of protein–ligand complexes
and a width K of SIFt fingerprints bits. The value of each element of P(r) is de-
rived by averaging the elements in each column of the SIFt matrix, yielding a
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Fig. 10.2 The procedure used to generate a
p-SIFt from a set of SIFts is illustrated in
(a). The profile shown corresponds to the p-
SIFt generated from the 93 kinase structures
using all seven bits to compute the SIFts
shown in (b). The p-SIFt is annotated with a
topmost bar delineating the general kinase
structural features for that portion of the

fingerprint; the bar below consists of alter-
nating blocks corresponding to each residue
(site in the uniform PKA numbering scheme)
in the kinase used to construct the finger-
print; the third bar consists of blocks for
each bit representing the interaction features
at that site.



numerical interaction frequency that varies from 0 to 1for unobserved to fully
conserved, respectively. The SIFt array, b, and resulting P(r) are given by

b �
b1�1 b1�2 b1�3 � � � b1�K

b2�1 b2�2 b2�3 � � � b2�K

��
�

bN�1 bN�2 bN�3 � � � bN�K

�
����

�
����

and

P�r� � P1 P2 P4 PK� �

where bi,r is the binary bit value in the SIFt i= 1,N at position r = 1,K. The values
in the p-SIFt at position r are given by

P�r� �
�N

i�1

bi�r

�
N

Because the interaction fingerprint represents the binding mode of a ligand to a
target protein, similar fingerprints imply that the corresponding ligands make
similar interactions with the protein.

We used the Tanimoto coefficient [11] to measure the similarity between two
SIFts, between two p-SIFts and between a SIFt and a p-SIFt. A set of SIFt pat-
terns can be clustered using the Tanimoto similarity measure by applying stan-
dard hierarchical clustering algorithms [12, 13]. The statistical Z score was em-
ployed to measure how significant the similarity between a SIFt and a target p-
SIFt (i.e. a group of structures) is above a certain background. The Z score is
an indication of how many standard deviations and in what direction, an obser-
vation deviates from the background distribution’s mean value.

10.4
SIFt and the Analysis of Protein Kinase – Inhibitor Complexes

As of April 2002, 93 kinase structures had been deposited in the public data-
banks since the first protein kinase structure was determined in 1991 by Tay-
lor’s group (5). This collection of structures covers 14 different protein kinase
subfamilies and 54 unique kinase–small molecule ligands/inhibitors (Z. Deng
et al., unpublished results). The catalytic domain of the protein kinases adopts a
canonical fold consisting of a small N-terminal primarily �-sheet and a large C-
terminal helical domain. These structures have revealed details of how ATP and
substrates bind to the kinase domain and provided a valuable insight into how
phosphorylation can regulate their activity [14–16]. The ATP binding site is lo-
cated between the N and C-terminal domains. Relatively few substrate com-
plexes exist and the data so far suggest a shallower binding site for substrates
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than for ATP. The majority of known kinase inhibitors bind to the ATP site and
few inhibitors have been described that target the substrate binding site.

10.5
Canonical Protein – Small Molecule Interactions in the Kinase Family

We have described the use of SIFt to analyze the conservation of contacts be-
tween protein kinase–inhibitor complexes [6, 7]. Our analysis revealed 56 resi-
dues from the kinase catalytic domain that are involved protein–inhibitor inter-
actions across the kinase family. These residues include (in PKA numbering):
the glycine-rich loop, which is a conserved signature of the family and plays a
role in binding of ATP (47–57), the hinge region, which is located between the
N- and C-terminal domains and plays a role in hydrogen bonding the adenine
moiety of ATP (123–125, 127, 130), b3 (70, 72), the hydrophobic pocket region
(95, 104, 105, 118, 119) and the “gatekeeper” residue whose size determines in-
hibitor access (120) and the activation segment which is targeted by several inhi-
bitors that stabilize the inactive conformation of the kinase.

We determined the degree of conservation across the kinase inhibitor com-
plexes by exploring the frequency of contacts at each of the 56 positions in the
93 complexes. We classed positions using the following ranges: conserved 0.7,
0.4 intermediate < 0.7, variable < 0.4. Approximately 20% of the contact interac-
tions are conserved over the 93 structures as a whole, 11% are intermediate in
conservation and 69% are variable. The conserved interactions are denoted in
Table 10.1 by the highlighted annotations and comprise a canonical set of inter-
actions that are evidently fundamental for kinase binding at the ATP site. The
canonical interactions are common to all inhibitors and may be used as a basic
kinase-like binding filter in virtual screening.

10.6
Clustering of Kinase Inhibitors Based on Interaction Fingerprints

Using SIFt, we can cluster together kinase–inhibitor complexes showing similar
interaction patterns. The approach involves computing the similarity metric (Ta-
nimoto coefficient) between all of the fingerprints and then using a hierarchical
clustering algorithm to group similar interaction fingerprints together. A den-
drogram derived from comparison of interaction fingerprints of the 93 protein–
inhibitor complexes revealed three major clusters (Fig. 10.3), consisting of ATP
and ATP analogs, p38 and CDK2 inhibitors.

The first cluster consists of p38 in complex with pyridinylimidazole inhibi-
tors. The second cluster consists mostly of human CDK2 in complex with differ-
ent compounds with diverse chemical properties. The third cluster, which does
not have a clear-cut boundary, is comprised of different kinases in complex with
ATP or ATP analog inhibitors denoted ATPg (GTP, AMPPNP, AMPPCP, AMP,
ADP, etc.). Besides these three major clusters, about one-third of the structures
are either singletons or form tiny clusters. Interestingly, the three major clusters
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Table 10.1 Summary of the raw frequencies observed for con-
tact interactions, where only residues having a frequency > 0.4
for any subgroup are listed. Residues are colored according to
interaction conservation: conserved �0.7 (italic), 0.4 inter-
mediate < 0.7 (bold), variable < 0.4 (bold-italic). Highlighted
cells in the columns indicate that the frequency was defined
as conserved (�0.7) for all subgroups independently. Wher-
ever possible, information on the context of the interaction
in binding ATP or inhibitors is included as an annotation

PKA Raw interaction frequency 2-Structure Interaction context
No.

All ATP CDK2 p38 Non-ATP

49 0.9 0.9 0.3 0.4 0.9 Gly-rich Lp ATP; hydrophobic contact with
adenine

50 0.6 0.9 0.3 0.2 0.5 Gly-rich Lp ATP; ribose
51 0.5 0.7 0.3 0.1 0.4 Gly-rich Lp ATP; ribose
52 0.5 0.9 0.4 0.0 0.3 Gly-rich Lp ATP; phosphate
53 0.4 0.7 0.2 0.1 0.1 Gly-rich Lp ATP; phosphate
54 0.3 0.5 0.2 0.9 0.2 Gly-rich Lp ATP; phosphate
55 0.2 0.5 0.1 0.0 0.1 Gly-rich Lp ATP; phosphate
57 1.0 1.0 0.7 0.8 1.0 Gly-rich Lp ATP; hydrophobic contact with

adenine, ribose, phosphate
70 1.0 1.0 1.0 1.0 1.0 b3 ATP; hydrophobic contact with

adenine
72 0.8 0.9 0.7 1.0 0.8 b3 ATP; phosphate
95 0.1 0.0 0.0 0.6 0.2 ac Hydrophobic pocket

104 0.7 0.7 0.7 0.8 0.8 Lp-ac-a4 ATP; hydrophobic contact with
adenine

106 0.1 0.0 0.0 0.4 0.1 Lp-ac-a4 Hydrophobic pocket
118 0.2 0.0 0.0 1.0 0.3 b5 Hydrophobic pocket
119 0.0 0.0 0.0 0.7 0.1 b5 Hydrophobic pocket
120 0.9 0.9 0.9 1.0 1.0 b5 Gatekeeper
121 0.8 0.9 1.0 1.0 0.8 b5 ATP; hydrogen bond with adenine
122 0.7 0.6 1.0 1.0 0.8 b5 ATP; hydrophobic contact adenine
123 1.0 1.0 1.0 1.0 1.0 Hinge ATP; hydrogen bond adenine
124 0.3 0.0 0.6 0.4 0.5 Hinge ATP; adenine water-mediated

interaction
125 0.2 0.0 0.5 0.4 0.4 Hinge
127 0.7 0.8 0.9 0.3 0.6 Hinge ATP; ribose
130 0.3 0.2 0.5 0.0 0.4 Hinge ATP; ribose water-mediated

interaction
168 0.2 0.5 0.2 0.0 0.1 Lp-b6-b7
170 0.6 0.8 0.4 0.2 0.4 Lp-b6-b7 ATP; ribose
171 0.3 0.4 0.4 0.0 0.3 Lp-b6-b7
173 0.9 0.9 1.0 0.3 0.9 Lp-b6-b7
182 0.0 0.0 0.0 0.0 0.0 b8 ATP; contact with Mg-loop region
183 0.6 0.5 0.3 0.4 0.7 b8 ATP; hydrophobic contact with Mg-

loop region
184 0.8 0.9 0.8 0.7 0.8 b8 ATP; contact with Mg-loop region
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represent different grouping examples of protein–ligand complexes: the first is
made up of the same protein and chemically similar compounds, the second
group contains the same protein but with a variety of ligands and the third clus-
ter contains different proteins in complex with chemically similar ligands.

10.7
Profile Analysis of ATP, p38 and CDK2 Complexes

The ATP, p38 and CDK2 SIFt clusters represent a set of structures having similar
conserved and variable interactions. In order to compare within and between these
clusters, we developed a profile-based methodology, p-SIFt. The p-SIFt approach is
analogous to profile-based techniques that have proven to be very useful in the
analysis and database mining of groups of protein sequences [17] and structures
[18, 19]. The sequence profile is constructed from a set of multiply aligned se-
quences or structures of a probe family and is used to identify distant relationships
to a database of target proteins. The profile is essentially a sequence position-spe-
cific scoring matrix encoding the probability of finding any of the 20 amino acid
residues at that position in the target. In the case of p-SIFt, the SIFts derived from
a set of probe structures are used to derive a position-dependent profile encoding
the probability that a given interaction at that position is present. The contact
p-SIFts derived for the ATPg, CDK2 and P38 clusters plotted in Fig. 10.4 measure
the degree of interaction conservation for each group of structures. From the
p-SIFts, it is evident that CDK2 and p38 inhibitors share some common binding
interactions as observed between ATP and some regions of the kinase domain
while displaying marked differences in others.

The 25 members of the ATPg cluster consist of nine structures of ATP com-
plexed with three different kinases and 16 structures of ATP analogs complexed
with six kinases. The ATPg p-SIFt computed from the ATPg cluster SIFts is
shown at the top of Fig. 10.4. For comparison, we also plotted the p-SIFt derived
using only the nine ATP structures in the ATPg cluster. For the nine ATP com-
plexes, 18 out of 23 contacts are classified as conserved between the kinases
and the ribose, triphosphate and adenine moieties. Moreover, there are no com-
pletely variable positions. Interestingly, even for these ATP-only structures, four
interactions lie in the intermediate conservation range.

A convenient way to compare directly the p-SIFts is to define a difference pro-
file computed by the direct subtraction of one p-SIFt from another. The differ-
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Fig. 10.3 (a) Hierarchical clustering of SIFts
from 93 protein kinase small molecule crys-
tal structures. On the right are the dendro-
gram and the corresponding distance matrix.
SIFts are reorganized according to the order
given by the dendrogram. Six different re-
gions are labeled above the SIFt heat map.

Three major clusters (1–3) are labeled on
the left side of the heat map and also a clus-
ter corresponding to the DFG-out conforma-
tion of the kinases. (b) Comparison of the
binding modes of the three different kinase
clusters.



ence profiles provide an insight into how the interaction patterns observed for
known kinase inhibitors differ from those detailed above for ATP. To this end,
we defined difference profiles p38 – ATPg, p38 – CDK2 and CDK2 – ATPg,
plotted in Fig. 10.5.

For the p38 – ATPg and p38 – CDK2 difference profiles (Fig. 10.5 a), the key
distinctions are determined in part by the identity of the residue at position
120. Referred to as the “gatekeeper” residue, it controls the relative access to the
hydrophobic pocket of the ATP site, a region not occupied by ATP. Bulky resi-
dues at position 120, such as Phe in CDK2, restrict access to the hydrophobic
pocket, limiting the contacts available to a putative inhibitor (Fig. 10.5b). The
small Thr “gatekeeper” in p38 renders the residues making up the hydrophobic
pocket accessible to small molecule inhibitors. The fact that small molecule in-
hibitors of p38 exploit these interactions is clearly evident from the p38 p-SIFt
(Fig. 10.5a), which indicates a set of intermediate and conserved interactions
corresponding to hydrophobic pocket residues. The contrast in interaction with
the hydrophobic pocket observed between p38, ATPg and CDK2 is clearly delin-
eated by the distinct positive differences visible in the p38 – ATP and P38 –
CDK2 difference profiles.
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Fig. 10.4 The contact-only p-SIFts for ATPg
(top), p38 (middle) and CDK2 (bottom) are
plotted as a function of PKA residue num-
bering. The unshaded outline shown in the
ATPg panel corresponds to the p-SIFt

derived from the nine ATP-only structures.
The increase in variability when ATP analogs
are introduced is clearly visible. The blocks
below the p38 p-SIFt denote residues mak-
ing up the hydrophobic pocket of the kinase.
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Fig. 10.5 (a) The contact-only difference pro-
files between p38-ATPg (top), p38-CDK2
(middle) and CDK-ATPg (bottom). The differ-
ence plots range from –1 to 1, where a value
of 0 indicates that the interaction is con-
served to the same degree in the two sets of

structures, and a value of –1 or 1 denotes
that a conserved interaction in one set of
structures is not conserved in the other.
(b) Binding sites for p38 and CDK2 with box
highlighting the hydrophobic pocket and
gatekeeper region.



In contrast, the CDK2 p-SIFt is more similar to the ATPg p-SIFt, as can be
observed in the CDK2-ATP difference profile. Unlike p38, in CDK2 the Phe
“gatekeeper” residue blocks access to the hydrophobic pocket. As a result, many
of the residues accessible to CDK2 inhibitors will be those that also interact
with ATP. In fact, of the conserved residues observed in the CDK2 p-SIFt, there
are none that are not also conserved in the ATPg p-SIFt.

Unlike contacts with the hydrophobic pocket, several interactions conserved
in the p38 cluster are common to CDK2, and also other non-ATP inhibitors. Fi-
nally, several interactions are conserved for ATPg and are observed with relative-
ly low frequency for CDK2 and p38. These ATPg-specific contacts involve resi-
dues at positions 50–55, which interact with the ribose and phosphate moieties
of ATP and with residues at positions 168, 170 and 171, in the vicinity of the
catalytic loop.

10.8
Virtual Screening

In cases where existing structural information is available for how small mole-
cules bind to a drug target, it would be valuable to use this information as tar-
get-based interaction constraints to discover additional leads. Our SIFt analysis
identified clear interaction preferences for ATP, p38 and CDK2, clusters as well
as a canonical set of conserved interactions common to all ligands bound to ki-
nases at the ATP binding site. In this section, we will demonstrate how the p-
SIFt can be applied in a VS workflow that can be tailored to a specific target
without having to rely solely on the ambiguities of energy-based scoring. To this
end, we tested the performance of p-SIFt-based scoring in a typical database en-
richment application using p38 and CDK2 as targets.

A database containing 14 known inhibitors of p38 and 54 examples of CDK2
was spiked into a background of 1000 diverse commercially available com-
pounds and docked against the X-ray structures of CDK2 (PDB code 1di8) and
p38 (PDB code 1a9u). We then analyzed whether p-SIFT provided any advantage
over popular scoring functions in enrichment of inhibitors by plotting the per-
centage of actives recovered as a function of the percentage of the database
screened.

For p38, the enrichment obtained by applying p-SIFt scoring provided mark-
edly superior results to those obtained using energy scoring such as Chemscore
and PMF functions [7]. p-SIFt scoring performs close to the ideal enrichment
curve over the first 2% of the database, meaning that 14 of the 16 known p38
actives were in the top 20 ranked ligands. On examination of the docking poses,
it was discovered that for the other two inhibitors correct poses were never gen-
erated in the initial pose pool. The p-SIFt scoring method requires a pose hav-
ing a correct docked binding mode to generate a high Z score, unlike energy
scoring, which can generate high scores even for poses that bind incorrectly.
Generating enrichments for the right reasons is a built-in advantage of the p-
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SIFt scoring approach. For p38, the Hybrid Scoring scheme (p-SIFT to rule out
undesirable poses followed by energy scoring function identify and rank the
best pose) was found to offer no improvement in enrichment over that obtained
from using p-SIFt scoring.

For CDK2, the Hybrid Scoring scheme variants performed better than the
Traditional and p-SIFt schemes irrespective of what scoring function was used
for pose selection and ranking. It appears that once the majority of the incorrect
poses that contribute to false-positive scores have been filtered out, the differ-
ences between scoring functions visible in the results using these energy func-
tions alone is factored out. Enrichments obtained using p-SIFt scoring are com-
parable to energy scoring up to 6% of the database screened and significantly
better at higher levels [7].

The CDK2 p-SIFt is less selective against false poses, as evidenced by the
poorer performance of p-SIFt scoring for CDK2 versus p38. Attaining database
enrichments for CDK2 comparable to those obtained for p38 is a considerably
more challenging task for VS. The large gatekeeper residue in CDK2 restricts
the number of residues accessible in the ATP binding site. The p-SIFt for
CDK2 samples less residues than p38 and conserved interactions are distributed
over a relatively small spatial region. As a result, in the CDK2 there are fewer
constraints on generating ligand placements and it is therefore easier to gener-
ate poses that satisfy conserved interactions in CDK2 compared with p38, where
the residues of the hydrophobic pocket are accessible.

10.9
Use of p-SIFT to Enrich Selectively p38, CDK2 and ATP Complexes

The difference profiles exhibit clear regions where ATPg, CDK2 and p38 inhibi-
tors bind to kinases in unique ways. These observations suggest that p-SIFts
can be used to model the selectivity of inhibitors based on the types of interac-
tions they are able to satisfy when binding to the kinase. In order to validate
the use of p-SIFts as selectivity filters, we carried out a self-recognition experi-
ment using the set of 93 X-ray structures as a test data set. For this purpose, p-
SIFts were derived for p38, CDK2 and ATP where ~50% of the structures for
each group were set aside and not used to derive the p-SIFt. For each p-SIFt, Z
scores were then computed against all 93 kinase structures in order to assess
the ability of p-SIFts to recognize members of their own group. For the p-SIFts
to serve as effective molecular filters, the p38 p-SIFt needs to generate statisti-
cally significantly higher Z scores against the p38 cluster X-ray structures rela-
tive to the remaining structures, whereas the CDK2 and ATPg p-SIFts should
perform similarly against the CDK2 and ATPg structures, respectively.

The p-SIFTs of ATPg, p38 and CDK2 p-SIFts were all successful at generating
large fractions of complexes with high Z scores and, importantly, these were
shifted relative to the counter targets (Fig. 10.6). The greatest separation in Z
score distributions was obtained for p38, owing primarily to p-SIFt features re-
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flecting conserved residues in the hydrophobic pocket of the ATP binding site.
The similarity between the ATPg and CDK2 p-SIFts, as discussed previously,
has the consequence that 90% of the CDK2 structures overlap in Z score with
the lowest scoring 35% of the ATPg [7]. This overlap exists primarily because
the ATPg p-SIFt is in essence derived from a subset of the interactions sampled
by CDK2. However, the differences between the ATP and CDK2 interaction pat-
terns are captured in the CDK2 p-SIFt. Consequently, the highest segment in
the distribution shown in Fig. 10.6 contains 19 of 20 CDK2 structures and over-
laps with only two ATPg structures.

10.10
Conclusion

This chapter has introduced interaction profiling as a new and powerful
approach to understand what interactions small molecules exploit in order to be
competitive against ATP and, often, selective for a particular kinase. More im-
portantly, we have shown that the information encoded in the interaction pro-
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Fig. 10.6 Box plots of Z distributions ob-
tained for the ATPg, p38 and CDK2, cluster
subsets described in the text are shown for
all kinases in the 93 X-ray structure set in
(a), (b) and (c), respectively. The right and
left arrows indicate the mean and the

median, respectively, of the distribution;
the vertical error bars delineate the upper
and lower bounds of the data; the horizontal
bars represent individual data points.
The box outlines the upper and lower quar-
tiles of the distribution.



files can be used effectively to filter virtual libraries selectively for ligands that
are inhibitors to a particular kinase. We envision that the use of SIFt should
fully leverage the use of experimental information from structure-based drug
design experiments into the design and optimization of virtual libraries
(Fig. 10.7). This should lead to more effective focusing of chemical libraries into
binding sites and may lead to improved hit rates from virtual screening.

Given the rapid growth in the number of available X-ray structures, it should
be possible eventually to construct and screen against a virtual selectivity panel
of interaction profiles for multiple targets in much the same way that inhibitors
are routinely tested against a panel of in vitro kinase inhibition assays. The re-
sulting virtual selectivity profile could be pre-computed for ligands in virtual li-
braries, thus providing an annotation that could be mined when selective inhibi-
tors to any target are desired. In addition, predicted cross-reactivity to a target
could be an effective starting point for lead discovery for novel targets, an
approach that has been demonstrated to be fruitful for protein kinases.
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Fig. 10.7 Integration of SIFt into the struc-
ture-based drug design workflow. The experi-
mental structure(s) of a drug target in com-
plex with small molecules are used to gener-
ate SIFt and p-SIFt. This is used to filter a

virtual chemical library, which is used to
identify compounds for testing. These are
confirmed as hits; their structures are deter-
mined, thus leading to further cycles of
structure-based drug design.
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Wolfgang Sippl

11.1
Introduction

In drug design, establishing a common alignment of 3D structures of investi-
gated molecules is an important prerequisite for several methodologies, e.g. 3D
similarity analysis, prediction of biological activities and even estimation of
ADME parameters [1–3]. Various methodologies and pharmacophore strategies
for the superposition of small ligands have therefore been proposed in the lit-
erature and are reviewed in this book (see Chapter 2). An alignment generation
procedure usually comprises two phases: superimposing the molecules and
scoring of the alignments derived. Superposition techniques may either utilize
information obtained from a binding site of a corresponding target protein (di-
rect methods) or be based solely on information obtained from the ligands
themselves (indirect methods). Some common assumptions, especially for the
indirect methods, are that the aligned molecules interact with the same amino
acids within a binding pocket and exhibit a unique binding mode. Additionally,
the generated alignment ideally contains the ligands in their bioactive confor-
mation. Superposition methods differ in how they treat flexibility and molecular
representation. Molecules can be considered as flexible or rigid; alternatively,
flexibility can also be modeled via a limited set of rigid conformers. The mole-
cules to be aligned can be represented by their atoms, shape or molecular inter-
action fields [1, 2].

The prediction of biological activity of novel compounds based on their struc-
ture is one of the major challenges in today’s drug design. A prerequisite for
most approaches is the correct alignment of the molecules under study. Similar-
ly to the alignment procedures, the prediction methods can be classified into
two major categories: indirect ligand-based and direct structure-based ap-
proaches. Ligand-based methods, including traditional quantitative structure–ac-
tivity relationships (QSAR) [4] and modern 3D QSAR techniques [5], are based
entirely on experimental structure–activity relationships for enzyme inhibitors
or receptor ligands. 3D QSAR methods are nowadays used widely in drug de-
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sign, since they are computationally feasible and afford fast generation of mod-
els from which biological activity of newly synthesized molecules can be pre-
dicted. The basic assumption is that a suitable sampling of the molecular inter-
action fields around a set of aligned molecules might provide all information
necessary for an understanding of their biological activities [6]. A suitable sam-
pling is achieved by calculating interaction energies between each molecule and
an appropriate probe placed at regularly spaced grid points surrounding the
molecules. The resulting energies derived from simple potential functions can
then be contoured in order to give a quantitative spatial description of molecu-
lar properties. If correlated with biological activity, 3D fields can be generated,
which describe the contribution of a region of interest surrounding the ligands
to the target properties. However, there is a major difficulty in the application
of 3D QSAR methods: in order to obtain a correct model, a spatial arrangement
of the ligands towards one another has to be found that is representative of the
relative differences in the binding geometry at the protein binding site. The suc-
cess of a molecular field analysis is therefore determined by the choice of the li-
gand superposition [7–9]. In most cases, the first step in a 3D QSAR study is
the generation of a reliable pharmacophore model. Many alignment strategies
have been reported and compared that accomplish this purpose (a detailed com-
parison of different methods can be found in [2]). Depending on the molecular
flexibility and the structural diversity of the compounds investigated, the task of
generating a unique pharmacophore can become less feasible. Despite the diffi-
culties concerning the molecular alignment, many successful 3D QSAR case
studies applying different programs have been reported in the last few years.
Most CoMFA applications in drug design have been comprehensively listed and
discussed in some reviews [10–13] and books [14–16].

Structure-based methods, on the other hand, incorporate information from
the target protein and are able to calculate fairly accurately the position and ori-
entation of a potential ligand in a protein binding site [17, 18]. Over the last de-
cade, a broad range of competitive methods for scoring protein–ligand interac-
tions has emerged [19–27]. Established approaches have been further improved,
e.g. in the area of the regression-based scoring functions or methods based on
first principles. In addition, well-known techniques have been applied to pro-
tein–ligand scoring by using atom–atom contact potentials to develop knowl-
edge-based scoring functions. The major problem with modern docking pro-
grams is the inability to evaluate the free energy of binding required to score
correctly different ligand–receptor complexes. The main problem in affinity pre-
diction is that the underlying molecular interactions are highly complex and
that the experimental data (both structural and biological data) are far from
being perfect for computational approaches. Numerous terms have to be taken
into account when trying to quantify correctly the free energy of binding [27–
29]. Elaborate methods such as the free energy perturbation and the thermody-
namic integration methods have been shown to be able – at least to some extent
– to predict binding affinities correctly, but have the drawback of being compu-
tationally very expensive.

11 Application of Structure-based Alignment Methods for 3D QSAR Analyses224



In order to exploit the strengths of both approaches, i.e. incorporation of pro-
tein information by docking programs and generation of predictive models for
related molecules by 3D QSAR methods, we and others suggested a combina-
tion of both methods, resulting in an automated unbiased procedure [30–37]. In
this context, the 3D structure of a target protein is used within a docking proto-
col to guide the alignment for a comparative molecular field analysis. This
approach allows the generation of a kind of target-specific scoring method con-
sidering all the structure–activity data known for a related ligand data set.

This chapter focuses on computational studies which employ a combination
of structure-based and 3D QSAR methods as a mean to predict the affinity of a
ligand for its receptor. The comprehensive utility of this approach is exemplified
by case studies published in the last few years and from our laboratory. Special
emphasis will be placed on a detailed description of the combined structure–li-
gand-based approach and the successful application of this procedure to the de-
sign of novel drug molecules.

11.2
Why is 3D QSAR So Attractive?

The era of quantitative analysis for the correlation of molecular structures with
biological data started in the 1960s with the classical equation for 2D QSAR anal-
ysis proposed by Hansch and Leo [4]. Since then, several QSAR approaches have
been developed [5, 11]. The first applicable 3D QSAR method was proposed in
1988 by Cramer et al. [6]. The primary aim of 3D QSAR methods is to establish
a correlation of biological activities of a series of structurally and biologically char-
acterized compounds with the spatial fingerprints of numerous field properties of
each molecule, such as steric demand, lipophilicity and electrostatic interactions.
Typically, a 3D QSAR study allows the identification of the pharmacophoric ar-
rangement of molecular features in space and provides guidelines for the design
of next-generation compounds with enhanced biological potencies.

No 3D QSAR method would be applied to a dataset unless one expected that
the analysis would reveal insights into useful 3D structure–activity relationships.
Since the 3D properties of molecules govern biological activity, it is especially
informative to see a 3D summary of how structural changes influence biological
activities. Approaches that do not provide such a graphical output are often less
attractive to the scientific community. An advantage of 3D over 2D QSAR meth-
ods is that they take into account 3D structures of molecules and are addition-
ally applicable to sets of structurally diverse compounds [38]. Recent QSAR
methods include 4D QSAR, where an ensemble of conformations for each li-
gand represents the fourth dimension [39], and 5D QSAR, which in addition
considers hypotheses for changes that might occur in a conformation of a re-
ceptor due to ligand binding (induced fit) as a fifth dimension [40].

The number of 3D QSAR studies has increased exponentially over the last de-
cade, since a variety of methods are commercially available in user-friendly, gra-
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phically guided software [6, 9, 41]. The most frequently applied methods include
the comparative molecular field analysis CoMFA, the comparative molecular
similarity indices analysis CoMSIA [9] and the GRID/GOLPE method (Generat-
ing Optimal Linear PLS Estimations) [41, 42]. Several reviews have been pub-
lished in the last decade dealing with the underlying theory, the problems and
the application of CoMFA-related approaches [11, 12, 38]. Apart from the com-
mercial distribution, a major factor causing the ongoing enthusiasm for 3D
QSAR comes from the proven ability of several of these methods to predict cor-
rectly the biological activity of novel compounds. This ability is gaining respect
as scientists realize that we are far away from the hoped-for fast and accurate
prediction of affinity from (the structure of) protein–ligand complexes by free-
energy perturbation or empirical scoring methods [23, 28].

11.3
CoMFA and Related Methods

11.3.1
CoMFA

For many years, 3D QSAR has been used as a synonym for CoMFA [6], which
was the first method that implemented in a QSAR method the concept that the
biological activity of a ligand can be predicted from its three-dimensional struc-
ture. Until now, CoMFA has been probably the most often applied 3D QSAR
method [12, 38]. A CoMFA study normally starts with traditional pharmaco-
phore modeling in order to suggest a bioactive conformation of each molecule
and ways to superimpose the molecules under study. The underlying idea of
CoMFA is that differences in a target property, e.g. biological activity, are often
closely related to equivalent changes in shapes and strengths of non-covalent in-
teraction fields surrounding the molecules, or, stated in a different way, the ster-
ic and electrostatic fields provide all information necessary for understanding
the biological properties of a set of compounds. Hence the molecules are placed
in a cubic grid and the interaction energies between the molecule and a defined
probe are calculated for each grid point. Normally, only two potentials, namely a
steric potential in the form of a Lennard–Jones function and an electrostatic po-
tential in form of a simple Coulomb function, are used within a CoMFA study.
It is obvious that the description of molecular similarity is not a trivial task, nor
is the description of the interaction process of ligands with corresponding bio-
logical targets. In the standard application of CoMFA, only enthalpic contribu-
tions of the free energy of binding are provided by the potentials used. How-
ever, many binding effects are governed by hydrophobic and entropic contribu-
tions. Therefore, one has to characterize in advance the expected main contribu-
tions of forces and whether under these conditions CoMFA will actually be able
to find realistic results.
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In the original CoMFA report, field values were systematically calculated for
ligands at each grid point of a regularly sampled 3D grid box, that extended 4 Å
beyond the dimension of all molecules in the dataset, using an sp3 carbon atom
with +1 charge as probe [6]. The grid resolution should be in a range to produce
the field information that is necessary to describe variations in biological activ-
ity. On the other hand, introduction of too much irrelevant data to statistical
analysis may result in a decrease in predictivity of the model. Typically, a resolu-
tion of 2 Å is utilized. Often, superior results are derived using a grid spacing
of 2 Å as opposed to the more accurate 1 Å spacing [7]. In addition, the CoMFA
program provides a variety of other parameters (probe atoms, charges, energy
scaling, energy cutoffs, etc.) which can be adjusted by the user. This flexibility
in parameter settings enables the user to fit the whole procedure as closely as
possible to a problem. However, it enhances the possibility of chance correla-
tions. Interestingly, nearly all of the successful CoMFA analyses have been done
with default parameters.

11.3.2
CoMSIA

Owing to the problems associated with the functional form of the Lennard–
Jones potential used in most CoMFA methods [12], Klebe et al. [9], developed a
similarity indices-based CoMFA method named CoMSIA (Comparative Molecu-
lar Similarity Indices Analysis). Instead of grid-based fields, CoMSIA is based
on similarity indices that are obtained by using a functional form that is
adapted from the SEAL algorithm. Three different indices related to steric, elec-
trostatic and hydrophobic potentials were used in their study of the classical Tri-
pos steroid benchmark dataset. Models of comparable statistical quality with re-
spect to internal cross-validation of the training set, in addition to predictivities
of the test set, were derived using the CoMSIA method. The clear advantage of
this method lies in the functions used to describe the molecules studied, and
also the resulting contour maps. The contour maps obtained from CoMSIA are
easier to interpret than those obtained by the CoMFA approach. The CoMSIA
procedure also avoids cutoff values used in CoMFA to restrict potential func-
tions by assuming unacceptably large values. Detailed descriptions of the meth-
od and its application can be found in the literature [9, 43]. Recently, the
authors of CoMSIA included a novel hydrogen-bond descriptor which should
overcome the problem of underestimating hydrogen bonds in CoMFA studies
[43].

11.3.3
GRID/GOLPE

The GRID program [44] has been used by a number of workers as an alterna-
tive to the original CoMFA method for calculating interaction fields. An advan-
tage of the GRID approach, apart from the large number of chemical probes
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available, is the use of a 6–4 potential function, which is smoother than the 6–
12 form of the Lennard–Jones type, for calculating the interaction energies at
the grid lattice points. Good statistical results were obtained, for example, in an
analysis of glycogen phosphorylase b inhibitors by Cruciani and Watson [45].
They used the GRID force field in combination with the GOLPE program [43],
which accomplishes the necessary chemometric analysis. The particularly inter-
esting aspect of this dataset is that the X-ray structures of all protein–ligand
complexes have been solved. This allowed the authors to investigate the dataset
using new and different methods to develop 3D QSAR techniques further.

A further refinement of the original CoMFA technique was realized by introduc-
ing the concept of variable selection and reduction [45]. A large number of vari-
ables in the descriptor matrix (i.e. the interaction energies) represent a statistical
problem in the CoMFA approach. These variables make it increasingly difficult for
multivariate projection methods, such as PLS, to distinguish the useful informa-
tion contained in the descriptor matrix from that of lower quality or noise. Hence
approaches for separating the useful from the less useful variables were needed.
The GOLPE approach was developed in order to identify which variables are
meaningful for the prediction of the biological activity and to remove those with
no predictivity [46]. Within this approach, fractional factorial design (FFD) is ini-
tially applied to test multiple combinations of variables [42]. For each combination,
a PLS model is generated and only variables which significantly increase the pre-
dictivity are considered. Variables are then classified according to their contribu-
tion to predictivity. A further advance in GOLPE is the implementation of the
smart region definition (SRD) procedure that aims to select the cluster of variables
mainly responsible for activity rather than a single variable. The SRD technique
seems less prone to change correlation than any single variable selection and im-
proves the interpretability of the models [46].

11.4
Reliability of 3D QSAR Models

The quality and reliability of any 3D QSAR model is strongly dependent on the
careful examination of each step within a 3D QSAR analysis. As with any
QSAR method, an important point is the question of whether the biological ac-
tivities of all compounds studied are of comparable quality. Preferably, biological
data should be obtained in the same laboratory under identical conditions. All
compounds being tested in a system must have the same mechanism (binding
mode) and all inactive compounds must be shown to be truly inactive. Only in
vitro data should be considered, since only in vitro experiments are able to reach
a real equilibrium. All other test systems undergo time-dependent changes by
multiple coupling to parallel biochemical processes (e.g. membrane permea-
tion). Another critical point is the existence of transport phenomena and diffu-
sion gradients underlying all biological data. One has to bear in mind that all
3D QSAR approaches were developed to describe only one interaction step in
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the lifetime of ligands. In all cases, where nonlinear phenomena result from
drug transport and distribution, any 3D QSAR technique should be applied
with caution. The biological activities of the molecules used in a CoMFA study
should ideally span a range of at least three orders of magnitude. For all mole-
cules under study, the exact 3D structure has to be reported. If no information
on the exact stereochemistry of the tested compounds is given (mixtures of en-
antiomers or diastereomers), these compounds should be excluded from a CoM-
FA study.

The search for the bioactive conformation and a molecular alignment consti-
tutes a serious problem within all 3D QSAR studies. It is one of the most im-
portant sources of wrong conclusions and errors in all 3D QSAR analysis. The
risk of deriving irrelevant geometries can be reduced by considering rigid ana-
logs. Even then, the alignment poses problems, because there are some cases of
different binding modes of seemingly closely related compounds [14]. Even if
the binding modes are comparable, the choice of wrong ligand conformations
may still result in a 3D QSAR analysis being unreliable. Chemical feature-based
pharmacophore alignments have been demonstrated to be a useful starting
point for 3D QSAR studies [48–50]. Problems in the generation of conforma-
tions and the correct alignment could be avoided by deriving them from the 3D
structures of ligand–protein complexes which are known from X-ray crystallo-
graphy, NMR or homology modeling [35].

The final stage of a 3D QSAR analysis consists in a statistical validation in or-
der to assess the significance of the model and hence its ability to predict bio-
logical activities of novel compounds. In most published 3D QSAR case studies,
the leave-one-out (LOO) cross-validation procedure has been used for this pur-
pose. The output of this procedure is the cross-validated q2 and the standard de-
viation of error prediction (SDEP), which are commonly regarded as ultimate
criteria of both the robustness and predictive ability of a model. The simplest
cross-validation method is LOO, where one object at a time is removed from
the dataset and predicted by the model generated. A more robust and reliable
method is the leave-several-out cross-validation. For example, in the leave-20%-
out cross-validation, five groups of approximately the same size are generated.
Thus, 80% of the compounds are randomly selected for the generation of a
model, which is then used to predict the remaining compounds. This operation
must be repeated numerous times in order to obtain reliable statistical results.
The leave-20%-out or also the more demanding leave-50%-out cross-validation
results are much better indicators for the robustness and the predictive ability
of a 3D QSAR model than the usually used LOO procedure [47, 51]. LOO often
yields too optimistic models, which fail when predicting real test set molecules.

Despite the known limitations of the LOO procedure, it is still uncommon to
test 3D QSAR models for their ability to predict correctly the biological activities
of compounds not included in the training set. Still, many workers claim that
their models, showing high LOO q2 values, have high predictive ability in the
absence of external validation (for a detailed discussion on this problem, see
[51–55]). Contrary such expectations, it has been shown in several studies that a
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correlation between the LOO cross-validated q2 value for the training set and
the correlation coefficient r2 between the predicted and observed activities for
the test set does not exist [52, 54]. Therefore, it is highly recommended to use
demanding cross-validation procedures and external test sets to validate further
an established 3D QSAR model.

11.5
Structure-based Alignments Within 3D QSAR

The combination of ligand-based and structure-based approaches is an attractive
strategy for ligands for which the binding site is known but the exact binding
mode has not been determined experimentally. This has been demonstrated by
a variety of approaches developed within the last decade. One of the earliest
approaches published in this field was the VALIDATE program by Hoad et al.
[56]. The method uses 12 physico-chemical and energetic parameters, including
the electrostatic and steric interaction energy between a receptor protein and li-
gands computed with the AMBER force field, to correlate these descriptors with
biological activities. The method has been validated on 51 diverse protein–ligand
X-ray structures. The ligands ranged in size from 24 to 1512 atoms and
spanned a pKi range from 2.47 to 14.0. The best fit equation, using PLS analy-
sis, yielded r2 = 0.85 with a standard error of 1.0 log units and a cross-validated
r2 = 0.78. This QSAR was found to be predictive for at least two of three test sets
of enzyme inhibitor complexes: 14 structurally diverse crystalline complexes
(predictive r2 = 0.81), 13 HIV protease inhibitors (predictive r2 = 0.57) and 11 ther-
molysin inhibitors (predictive r2 = 0.72). VALIDATE has also been successfully
applied to the design of non-peptidic HIV-1 protease inhibitors [57].

Another approach which utilizes the intermolecular interaction energy be-
tween the receptor and its ligand is the COMBINE approach developed by Ortiz
et al. [58]. It employs a unique method that partitions the interaction energy be-
tween receptor and ligand fragments and subjects them to a statistical analysis.
This is suggested to enhance contributions from mechanistically important in-
teraction terms and to tune out noise due to inaccuracies in the potential energy
functions and molecular models. For a set of 26 phospholipase A2 inhibitors,
the direct correlation between interaction energies, computed using the CFF91
DISCOVER force field and percentage enzyme inhibition, was very low,
r = 0.212. However, with the COMBINE approach, employing PLS fitting and
the GOLPE variable selection procedure, good correlations with the percentage
inhibition rate were observed (qLOO

2 = 0.82). Predictive models were also obtained
for a variety of other biological targets and their ligands: Acetylcholinesterase
(AChE) inhibitors (n = 35, qLOO

2 = 0.76) [59], factor-Xa inhibitors (n = 133,
qLOO

2 = 0.61) [60], periplasmic oligopeptide binding component (OppA) ligands
(n= 28, qLOO

2 = 0.73) [61], neuraminidase inhibitors (n= 39, qLOO
2 = 0.78) [62], cy-

clooygenase-2 inhibitors (n= 58, qLOO
2 = 0.64 [63] and cytochrome P450 1A2 li-

gands (n= 12, qLOO
2 = 0.74) [37].
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Recent approaches that primarily employ the combination of structure-based
alignment strategies and comparative molecular field analysis to predict ligand
affinity have included studies of ligand binding to enzymes and receptor X-ray
structures, and also protein homology models. Marshall’s group was one of the
first to apply this technique. They examined the binding of 59 HIV-1 protease
inhibitors from different structural classes [64]. The availability of X-ray crystal-
lographic data for at least one representative from each class bound to HIV-1
protease provided information regarding not only the active conformation of
each inhibitor but also, via superposition of protease backbones, the relative po-
sitions of each ligand with respect to one another in the active site of the en-
zyme. The molecules were aligned and served as templates on which additional
congeners were field-fit minimized. The predictivity of the derived models was
subsequently evaluated using test set molecules, for which X-ray structural in-
formation was available.

Tropsha’s group used the crystal structures of the three AChE inhibitors – ta-
crine, edrophonium and decamethonium – as a template on which other struc-
turally analogous AChE inhibitors were superimposed. In order to obtain quan-
titative relationship between the structure and biological activities of the inhibi-
tors, CoMFA in combination with a variable-selection method {cross-validated r2

guided region selection (q2-GRS) routine [65]} was carried out. Using the struc-
ture-based alignment of 60 AChE inhibitors and CoMFA/q2-GRS yielded a
highly predictive QSAR model with a q2 of 0.73 [65]. Whereas in the last two
studies manually derived protein-based alignments were used as input for a 3D
QSAR analysis, several case studies have recently been published in which an
automated docking procedure was applied for structure-based alignment genera-
tion. Whereas in the two applications of Marshall’s and Trophsa’s groups manu-
ally derived protein-based alignments were used as input for 3D QSAR analysis,
several studies have been published recently in which an automated docking
procedure has been used for the structure-based alignment generation.

Mügge and Podlogary generated a series of CoMFA models from docking-
based and atom-based alignments for biphenylcarboxylic acid matrix–metallo-
proteinase-2 (MMP-3) inhibitors [66]. The underlying statistics of these ap-
proaches were assessed in order to determine whether a docking approach can
be employed as an automated alignment tool for the development of 3D QSAR
models. The docking-based alignment provided by a DOCK/PMF scoring proto-
col yielded statistically significant, cross-validated CoMFA models. Field fit mini-
mization was successfully applied to refine the docking-based alignments. The
statistically best CoMFA model has been created by the ligand-based alignment
that has been found, however, to be inconsistent with the stromelysin crystal
structure. The refined docking-based alignment resulted in a final alignment
that is consistent with the crystal structure and only slightly statistically inferior
to the ligand-based aligned CoMFA model.

Constantino et al. used the combination of a docking-based alignment and
3D QSAR analysis to build a predictive model for 46 poly(ADP-ribose)polymer-
ase (PARP) inhibitors [67]. Representative PARP inhibitors were docked into
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the crystallographic structure of the catalytic domain of PARP by using the
AutoDock 2.4 program. The docking studies provided an alignment scheme that
was instrumental in superimposing all the remaining inhibitors. Based on this
alignment, a 3D QSAR model was established using the RECEPTOR module
within Cerius2 [68]. The resulting statistical analysis yielded a predictive model
able to explain much of the variance of the 46-compound data set (n = 46,
qLOO

2 = 0.74).
Matter et al. examined a series of 138 inhibitors of the blood coagulation en-

zyme factor Xa using CoMFA and CoMSIA [69]. To rationalize biological affinity
and to provide guidelines for further design, all compounds were docked into
the factor Xa binding site. Those docking studies were based on X-ray structures
of factor Xa in complex with literature-known inhibitors. The docking results
were validated by four X-ray crystal structures of representative ligands in factor
Xa. The 3D-QSAR models based on a superposition rule derived from these
docking studies were validated using conventional and cross-validated q2 values.
This led to consistent and highly predictive 3D-QSAR models with which were
found to correspond to experimentally determined factor Xa binding site topol-
ogy in terms of steric, electrostatic and hydrophobic complementarity (n= 138,
qLOO

2 = 0.75). The same strategy was successfully applied to a data set of MMP-8
matrix–metalloproteinase inhibitors (n= 90, qLOO

2 = 0.57) [70].
Tervo et al. examined the binding of 92 catechol-O-methyltransferase inhibi-

tors (COMT) [71]. They used a combination of the FlexX molecular docking
method with a GRID/GOLPE 3D QSAR to analyze possible interactions be-
tween COMT and its inhibitors and to initiate the design of new inhibitors. The
GRID/GOLPE models were made by using bioactive conformations from dock-
ing experiments, which yielded a q2 value of 0.64. The docking results, the
COMT X-ray structure and the 3D QSAR models were found to be in good
agreement with each other. Interest was also focused on how well the calculated
FlexX total energy scores correlated with the experimental biological activity.
FlexX total energy scores for the 92 compounds were correlated with the corre-
sponding pIC50 values, resulting in an r2 value of 0.30, indicating the problem
of scoring functions.

In a study by the same group, structure-based alignment techniques for 3D
QSAR were analyzed and compared with traditional atom-based approaches. A
set of 113 flexible cyclic urea HIV-1 protease inhibitors was used to generate
CoMFA and CoMSIA models [72]. Inhibitors that were aligned automatically
with GOLD were in agreement with information obtained from existing X-ray
structures. Both the protein- and the ligand-based alignment strategy produced
statistically significant CoMFA and CoMSIA models (best q2 value of 0.65 and
best predictive r2 value of 0.75), whereas the GOLD-based alignment gave more
robust models for predicting the activities of an external inhibitor set.

Some groups have applied the docking-based alignment strategy to develop
3D QSAR models for nuclear hormone receptor ligands. During the last decade,
several X-ray structures of nuclear hormone receptors in complex with hor-
mones, agonists and antagonists have been resolved and used for structure-
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based drug design [73]. In general, automated docking programs were shown to
be successful in docking ligands to this receptor class [34, 74, 75]. Therefore, it
was appealing to use structure-based 3D QSAR approaches also for this class of
targets. Predictive and robust receptor-based 3D QSAR models have been re-
ported for estrogen receptor agonists (n= 30, qLOO

2 = 0.90, qL50%O
2 = 0.82 [34] and

n= 36, qLOO
2 = 0.63 [76]), and also for androgen receptor ligand (n= 67, qLOO

2 = 0.66
[77] and n= 25, qLOO

2 = 0.78 [78]).
Moro et al. used a homology model of the A3 adenosine receptor to generate

a target-based alignment [79]. Docking-based structure superimposition was
used to perform a 3D QSAR analysis using the CoMFA program. A correlation
coefficient q2 of 0.84 was obtained for a set of 106 A3 receptor ligands. Both
steric and electrostatic contour plots, obtained from the CoMFA analysis, were
found to be in agreement with the hypothetical binding site achieved by molec-
ular docking. Following the reported computational approach, 17 new ligands
were designed, synthesized and tested. Consistently, the predicted Ki values
were very close to the experimental values.

The nearly exponential growth of the Protein Data Bank in the last few years
has resulted in a huge number of 3D structures of interesting target proteins
which can be analyzed by means of structure-based drug design methods. It
has also been shown on numerous high-resolution protein–ligand structures
that docking methods are nowadays able to predict fairly accurate the position
of ligands in the corresponding binding sites [25]. Therefore, it is not surprising
that an increasing number of structure-based 3D QSAR models have now been
published. A combination of docking and comparative molecular field analysis
has been successfully applied to enzyme inhibitors of the following pharmaceu-
tically relevant targets: non-nucleoside HIV-1 reverse transcriptase inhibitors
(n= 29, qLOO

2 = 0.72) [80], Raf-1 kinase inhibitors (n= 91, qLOO
2 = 0.53) [81], aldose

reductase inhibitors (n = 45, qLOO
2 = 0.56) [82], cyclooxygenase-2 inhibitors (n = 88,

qLOO
2 = 0.84) [83], HIV-1 reverse transcriptase inhibitors (n = 70, qLOO

2 = 0.84) [84],
EGFR kinase inhibitors (n= 96, qLOO

2 = 0.64) [85], Yersinia protein tyrosine phos-
phatase YopH inhibitors (n = 34, qLOO

2 = 0.83) [86], HIV-1 integrase inhibitors
(n= 66, qLOO

2 = 0.72) [87], HIV-1 reverse transcriptase inhibitors (n = 50,
qLOO

2 = 0.78) [88], dihydrofolate reductase inhibitors (n = 240, qL10%O
2 = 0.65) [89]

and type-B monoamine oxidase inhbitors (n= 130, qL10%O
2 = 0.73) [90].

We have successfully applied the combination of structure-based 3D QSAR to
several drug design projects [34, 35, 91–95]. Our goal was the prediction of bio-
logical activities and prioritizing synthesis for proposed compounds a priori. To
show exemplarily the potential of the combined approach, a case study is pre-
sented here, in which the structure-based 3D QSAR was used for the design of
novel AChE inhibitors [33, 96]. AChE is an enzyme that hydrolyzes the neuro-
transmitter acetylcholine (ACh) at cholinergic synapses with a turnover rate su-
perior to most other known enzymes [97]. Recent research interest regarding
this enzyme is due not only to this high catalytic efficiency, but also to the
broad implications of AChE inhibition for human health, agrochemistry and
chemical agents. For example, Alzheimer’s disease (AD) is associated with low
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in vivo levels of ACh, hence AChE has been the focus of many drug discovery
projects aimed at maintaining available ACh via mild or reversible inhibitors
such as tacrine and donepezil [98, 99]. AD is the most common cause of de-
mentia in the elderly population. The cholinergic hypothesis of AD has pro-
vided the rationale for the current major therapeutic approach to AD. However,
to date, all longer term studies have shown that clinical efficacy declines as a re-
sult of either a loss of drug efficacy or the relentless progression of the disease.
Hence interest in the discovery of novel AChE inhibitors continues since the
current AChE inhibitors lack perfection.

The availability of the AChE crystal structures of various species in its un/
complexed form provides a solid basis for the structure-based design of novel
AChE inhibitors [100]. Within AChE, two principal binding sites can be found.
The catalytically active site is located at the bottom/base of a deep gorge in the
enzyme. The ACh catalysis reaction is accomplished by a collective interaction
of a catalytic triad consisting of Ser203, Glu334 and His447 and nearby residues
(e.g. the choline binding site: Trp86) [101].

AChE also has a peripheral anionic site (PAS) located near the enzyme sur-
face at the entrance of the active site gorge. In the PAS, the Trp286 residue
plays a very important role in ligand binding that affects enzymatic activity
through a combination of steric blockade of ligands moving through the gorge
and allosteric alteration of the catalytic triad conformation and efficiency [102].
The gorge itself is a narrow hydrophobic channel with a length of 20 Å, con-
necting the PAS site to the active site [103]. An acyl binding pocket consisting
of Gly122, Trp236, Phe295, Phe297 and Phe338 residues is responsible for the
interaction with the acetyl group [104]. Early inhibition research was mainly
focused on ligands binding in the active site (e.g. tacrine, amiridine). Recent
efforts have focused on finding novel ligands that bind to both sites in order to
search for more potent reversible inhibitors (e.g. TAK-147, E2020 [99]), selec-
tively favoring the inhibition of AChE rather than the related butyrylcholinester-
ase (BChE). In this context, we focused on the search for novel potent and se-
lective AChE inhibitors [33, 96]. The starting point of our AChE project was the
finding that the morpholine derivative minaprine showed weak inhibition of
AChE [105]. Starting with the lead structure minaprine and the available X-ray
structures of AChE (uncomplexed and complexed with different inhibitors [102–
108]), a variety of minaprine derivatives were developed [109].

A detailed inspection of the available AChE inhibitor X-ray structures yielded
relevant information concerning the orientation of the inhibitors within the
binding pocket. AChE shows a nearly identical three-dimensional structure in
all known X-ray structures. The active site is located 20 Å from the protein sur-
face at the bottom of a deep and narrow gorge. The only major conformational
difference between the four complexes is the orientation of Phe330, a residue
located in the middle of the gorge. Depending on the co-crystallized inhibitor,
this aromatic residue adopts a different conformation. However, the positions of
the four inhibitors in the binding pocket are different, indicating that more
than one clearly defined binding region exists. In order to find a reliable dock-
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ing/scoring strategy for this target, the known crystal structures of AChE–inhib-
itor complexes were taken as a positive control. AutoDock in combination with
a force-field refinement yielded good results when docking the AChE inhibitors
[33, 96]. The program has been used in many docking studies and shows good
accuracy. However, it should be remembered that it is not the fastest method
[19]. AutoDock uses a Lamarckian genetic algorithm to explore the binding pos-
sibilities of a ligand in a binding pocket. The interaction energy of ligand and
protein is evaluated using atom affinity potentials calculated on a grid similar to
that described by Reynolds et al. [44]. The minimized uncomplexed AChE was
used as input structure for the docking simulations. During the docking proce-
dure, all ligand atoms were considered flexible, while protein atoms were kept
fixed. The 100 resulting complexes were clustered with an r.m.s.d. tolerance of
0.7 Å. In a second step, low-energy complexes were re-ranked according to the
interaction energy calculated with a more detailed energetic model based on the
YETI force field [110, 111]. For this second step, the 20 top-ranked complexes of
the AutoDock output were selected. The protein structure was kept fixed during
the minimization, whereas the ligand was allowed to change its conformation
and position in the binding pocket. Applying this minimization, the ligand con-
formation is relaxed into a neighboring local energy minimum.

AChE stands out as a target to which it is particularly hard to dock. Looking
closer at the individual docking modes of the known inhibitors, it is apparent
that many of the suggested binding modes are in fact wrong. The AChE bind-
ing cavity is large, accommodates many water molecules and more than one de-
fined binding region in the pocket has been identified. The ligand–protein inter-
actions observed in the crystal structure of the AChE complex used for docking
consist mainly of van der Waals and hydrophobic interactions, with only one
positively charged ligand atom involved in electrostatic interactions. No direct
hydrogen bonds between the ligand and the protein have been observed, only
water-bridged hydrogen bonds. Minaprine derivatives are fairly symmetrical
molecules, with aromatic rings involved in �–� interactions with the protein at
both ends of the molecule. �–� stacking is not modeled by the force field em-
ployed in AutoDock. It has been observed that hydrogen bonds are particularly
important for obtaining correct docking modes in most docking programs [18,
20]. The symmetry of the molecules, the lack of �–� interactions modeled and
falsely predicted hydrogen bonds result in a large number of improbable dock-
ing poses. To obtain more consistently correct docking results for this particular
target, one would need to include specific water molecules during the docking
run or post-docking filters to select the correct docking pose. In the present
study, the program GRID was used to compare the generated docking poses
with the molecular interaction fields. GRID interaction fields were calculated
for the binding pocket using the trimethylammonium, methyl, carbonyl, amide
and DRY probe. Taking the derived interaction fields as filters along with the
complexes generated by the AutoDock procedure, we were able to reproduce the
conformation of all co-crystallized inhibitors. As expected, the closest agreement
with the experimental data was observed when the protein structure extracted
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from the corresponding AChE–inhibitor complex was taken as a target for the
subsequent docking procedure. All r.m.s.d. values were below 1.2 Å (normally a
value below 2.5 Å indicates successful docking).

The ability to predict accurately the binding conformation of tacrine, deca-
methonium, edrophonium and huperzine gave confidence that we could use
our model to evaluate the binding conformation of aminopyridazine compounds
(Fig. 11.1).

Since the aminopyridazine derivatives have a comparable size to decametho-
nium and it is likely that they interact in a similar way with the binding site,
we took the protein structure from the AChE-decamethonium complex for
further docking.

Figure 11.2 shows the predicted position of an aminopyridazine in compari-
son with the position of decamethonium observed in the corresponding crystal
structure. The hydrophobic parts of the aminopyridazine inhibitors interact with
various aromatic residues in the binding pocket. The benzyl ring of the inhibi-
tor displays classical �–� stacking with the aromatic ring of Trp84, thereby occu-
pying the binding site for quaternary ligands. The charged nitrogen of the pi-
peridine moiety makes a cation–� interaction with Phe330 and electrostatic in-
teractions with Tyr121. No direct hydrogen bonds were observed between polar
groups of the inhibitor and the binding site. A similar binding orientation with-
in the binding pocket was observed for all other inhibitors (Fig. 11.3).

In the next step, we focused on a possible correlation between the derived
AutoDock scoring values and the YETI protein–ligand interaction energies and
the observed biological data. In an attempt to correlate the scoring values and
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the calculated interaction energies with the experimental data, it turned out that
no correlation could be detected in the case of the scoring values and only a
moderate correlation was observed for the 42 training set molecules. This obser-
vation is in agreement with many docking studies in the literature [23, 112],
and represents a general problem with scoring functions.

Therefore, the force-field refined docking poses were subsequently extracted
from the protein environment and were taken as input for a GRID/GOLPE
analysis. Applying the variable-selection strategy incorporated within GOLPE,
we obtained a significant 3D QSAR model. The significance was tested by ap-
plying a variety of validation procedures. The LOO analysis yielded a correlation
coefficient with a cross-validated qLOO

2 of 0.94 for the water probe and 0.92 for
the methyl probe. In addition, we analyzed the reliability of the model by apply-
ing leave-20%-out and leave-50%-out cross-validation (100 runs). Both models
are also robust, indicated by high correlation coefficients of q2 = 0.91 (water
probe, SDEP = 0.41) and 0.90 (methyl probe, SDEP = 0.44) obtained by using the
leave-50%-out cross-validation procedure. The statistical results gave confidence
that the derived model could also be used for the prediction of novel com-
pounds.

To get an impression of which parts of the AChE inhibitors are correlated
with variation in activity, we analyzed the PLS coefficient plots (obtained by
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using the water and the methyl probe) and compared them with amino acid re-
sidues of the binding pocket. The plots indicate those lattice points where a par-
ticular property significantly contributes and thus explains the variation in bio-
logical activity data (Fig. 11.4).

The plot obtained with the methyl probe indicated that close to the arylpyrida-
zine moiety, a region with positive coefficients exists (region A in Fig. 11.4).
The coefficients were superimposed with the original GRID field obtained for
compound 4j with the methyl probe. The interaction energies in region A are
positive, therefore the decrease in activity is due to a steric overlap within this
region. Hence it should be possible to obtain active inhibitors by reducing the
ring size compared with compound 4j (which is shown in Fig. 11.4 together
with the PLS coefficient maps). For that reason, several molecules containing
hydrophobic groups were proposed (Table 11.1).

A second interesting field was observed located above the arylpyridazine
moiety in the model obtained using the water probe. Here a region exists where
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Fig. 11.3 Receptor-based alignment of all investigated inhibitors
as obtained by the docking analysis. The solvent-accessible surface
of the binding pocket is displayed.



polar interactions increase activity (region B in Fig. 11.4). After analysis of the
entrance of the gorge (the interaction site for the arylpyridazine system), we
rationalized the design of compounds bearing polar groups. In the calculated
AChE–aminopyridazine complexes we observed two polar amino acid residues
(Asn280 and Asp285) located at the entrance of the gorge which could serve as
an additional binding site for the substituted arylpyridazine system. To test this
hypothesis, several inhibitors possessing polar groups with hydrogen-bond
donor and acceptor properties were synthesized and tested. The designed in-
hibitors were docked into the binding pocket by applying the developed proce-
dure and their biological activities were predicted using the PLS models. In
Table 11.1 the predicted and experimentally determined inhibitor activities are
listed for the novel compounds. In general, excellent agreement between the
predicted and experimentally determined values was observed, indicated by the
low SDEPext values of 0.44 (water model) and 0.40 (methyl model). The reduc-
tion in the size of the aminopyridazine ring system resulted in highly potent in-
hibitors 4g–4i. The molecules of the second series of designed inhibitors con-
taining polar groups were also accurately predicted. The gain in activity com-
pared with the non-substituted compound 3y (Fig. 11.1) is moderate, indicating
that the potential interaction with the two polar residues at the entrance does
not play an important role. Since the two residues are located at the entrance of
the binding pocket, it may be possible that these residues undergo stronger in-
teractions with water molecules than with the protein side-chains.

In addition, traditional ligand-based 3D models were created in order to com-
pare the results from structure-based and atom-based alignment techniques.
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Fig. 11.4 PLS coefficient maps obtained using the water
probe (a) and the methyl probe (b). Green and cyan fields are
contoured at –0.003 and yellow and orange fields at +0.003
(compound 4j is shown for comparison).



The ligand-based alignments were carried out using the superposition program
FlexS [2], and compound 4j as rigid template (in the conformation obtained by
the docking) on the one site and the Multifit routine within the SYBYL software
and the same template on the other site (Fig. 11.5).

Both 3D QSAR models were generated in the same way (i.e. water probe,
SRD/FFD variable selection, statistical validation) as described for the docking-
based models. The significance was tested by applying cross-validation proce-
dures. The LOO analysis yielded a correlation coefficient with a cross-validated
qLOO

2 of 0.77 for the Multifit and an qLOO
2 of 0.63 for the FlexS alignment. In ad-

dition, we analyzed the reliability of the models by applying the leave-50%-out
cross-validation procedure. Both models are also robust, indicated by the correla-
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Table 11.1 Designed compounds predicted using the GRID/GOLPE model

Compound Structure Observed a) Predicted b) Predicted c)

4g 8.00 7.00 7.20

4h 7.41 7.62 7.66

4i 7.66 7.48 7.56

6g 7.24 6.90 6.77

6h 7.24 7.05 7.11

6i 7.27 7.25 7.2

6j 7.14 6.88 6.92

a) Inhibitory activity measured on the AChE of Torpedo califor-
nica [12].

b) Predicted activity using the water probe model.
c) Predicted activity using the methyl probe model.



tion coefficients obtained of q2 = 0.71 (Multifit) and 0.57 (FlexS). However, com-
pared with the receptor-based 3D QSAR models, both ligand-based models
showed larger deviations when predicting the activities of the six designed inhi-
bitors. The external SDEP values (0.86 and 0.81, respectively) are twice the
SDEP value of the docking-based 3D QSAR model (0.44), indicating the reliabil-
ity of the receptor-based approach.

In conclusion, using the receptor-based 3D QSAR strategy we were able to de-
sign potent novel AChE inhibitors which seem to interact simultaneously with
the cation–� subpocket of the catalytic site and the peripheral site of the en-
zyme. Further support for our docking study came from the crystal structure of
AChE in complex with donepezil [112]. Like our most potent inhibitors, donepe-
zil also contains a benzylpiperidine moiety which shows a similar position and
orientation in the published crystal structure to the corresponding group in our
docking results. The comparison of both AChE–inhibitor complexes revealed
that both kinds of inhibitors adopt comparable conformations in the narrow
binding pocket. As we predicted for our aminopyridazine inhibitors, donepezil
makes no direct hydrogen bond to any amino acid residue of the binding pock-
et. Only water-bridged hydrogen bonds have been detected for donepezil, as pro-
posed for the described aminopyridazine compounds (Fig. 11.6).

11.6
Conclusion

In this chapter, case studies have been reviewed where a combination of 3D
QSAR and receptor-based alignments led to predictive and meaningful models.
Apart from the good predictive ability, the models derived are also able to indi-
cate which interaction sites in the binding pocket might be responsible for the
variance in biological activities. In the last decade, structure-based methods have
become major tools in drug design, including lead finding and optimization. It
has also been shown that structure-based methods are nowadays able to predict
fairly accurately the position of a ligand in its binding site. Apart from the accu-
rate prediction of experimental data, modern docking methods have become
more and more efficient. Meanwhile, docking programs are being developed
that accomplish docking of highly flexible ligands in a few seconds or minutes
on modern PCs. The major problem is still the prediction of the binding affini-
ty, probably limited by the approximation used in today’s scoring and force field
methods [24–27]. The application of 3D QSAR methods may facilitate the pre-
diction of binding affinities if one has a series of compounds which bind in a
similar way to a target protein. Up to now, the imprecise nature of docking and
scoring has made blind virtual screening of large number of compounds with-
out any information about true actives or known experimental complex struc-
tures a risky exercise. It has been shown by Jacobsson et al. that limited experi-
mental information and proper multivariate statistical treatment of the scoring
data dramatically increase the value of these kinds of computations [113]. They
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generated scoring matrices for known actives and potential inactives for four
different targets, using docking followed by scoring with seven different scoring
functions. Based on these matrices, multivariate classifiers were generated and
evaluated with external test sets and compared with classical consensus scoring
and single scoring functions. It was found that proper multivariate analysis of
scoring data is very rewarding in terms of recall of known actives and enrich-
ment of true actives in the set of predicted actives. Another interesting strategy
which might overcome the problem of neglecting the protein information in a
3D QSAR analysis has been described by Gohlke and Klebe [114].

Since a multivariate QSAR analysis considers only the information that ap-
plies to the considered data set, advantages are offered in comparison with
more elaborate methods. These methods have to consider all influences on li-
gand binding and must calculate the corresponding amounts correctly. Thus, a
multivariate QSAR analysis is able to provide a kind of scoring function valid
for a particular data set. Since the reported combined strategy is able to predict
biological affinity rapidly, the method can be applied to large ligand series. So
long as methods are not developed that are able to solve the affinity prediction
problem, structure-based 3D QSAR will remain an exciting strategy for drug de-
sign studies. Lastly, with the advent of sophisticated protein homology modeling
and available protein crystal structure information, it is hoped that 3D QSAR
models may provide insight into which intramolecular interactions are impor-
tant and consistent with a proposed binding mode.

11 Application of Structure-based Alignment Methods for 3D QSAR Analyses242

Fig. 11.5 Ligand-based alignments obtained applying the
FlexS (a) and SYBYL Multifit (b) program. Compound 4j
is colored magenta.
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Fig. 11.6 Comparison of the experimentally determined
AChE–donepezil complex and the predicted position of the
aminopyridazine 4j. The aminopyridazine (light gray) shows a
similar conformation and interaction pattern to donepezil
(dark gray) in the corresponding X-ray structure.
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12.1
Introduction

Many tools and protocols are now available for the scientist involved in the drug
discovery process. When the structure of the macromolecular target (usually
termed the receptor) is unknown, the ligand-based drug design approach can be
applied for different purposes. As an example, given a set of compounds acting
through the same mechanism of action (that is, able to bind to the same site of
a receptor), one can investigate the chemical features responsible for the activity
and summarize them in terms of pharmacophoric models. However, a problem
that sometimes arises in pharmacophore-based approaches is the need to take
into account possible adverse steric interactions between inactive compounds in
a dataset and the target protein counterpart. The most common situation en-
countered in the literature is connected with the mining of large databases. In
this case, the most likely outcome of queries based on relatively simple pharma-
cophore hypotheses (that contain three or four features) would be very large hit
lists of several hundreds of compounds, difficult to evaluate critically. Addition
of excluded volume spheres to pharmacophores or ligand-forbidden zones to
constrain the models is consequently expected to reduce the number of re-
trieved hits considerably.

Based on the above considerations, we report in this chapter two case studies
where pharmacophore generation and handling plays a pivotal role in finding
new hits. In the first example, a classical computational strategy consisting of
pharmacophore building, pharmacophore validation, database mining, hit iden-
tification and hit optimization is described, aiming at the identification of po-
tent antagonists of the �1 adrenergic receptor. Additionally, we also report how
this original pharmacophore model for �1 adrenoceptor antagonists evolved to-
wards �1d subtype selectivity. In the second example, in contrast, the rationaliza-
tion of the antifungal activities of azole compounds is exploited to discuss the
importance and utility of adding excluded volume spheres (representing regions
of the space forbidden to the ligands) to a pharmacophore.
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12.2
Building Pharmacophore Models Able to Account for the Molecular Features
Required to Target the �1 Adrenergic Receptor (�1-AR) and its Subtypes

12.2.1
A Pharmacophore Model for �1-AR Antagonists

In recent years, the search for new selective �1-AR antagonists has increased,
owing to their importance in the treatment of hypertension and of benign pros-
tatic hyperplasia (BPH). In fact, �1-AR blockers have been employed in the
treatment of BPH for more than two decades, owing to the significant improve-
ments in lower urinary tract symptoms (LUTS) and flow-rates in patients with
bladder outflow (urinary) obstruction [1, 2]. In this context, we first synthesized
a new class of arylpiperazine-pyridazinone derivatives [belonging to the same
structural class as compounds (1) and (2); see Table 12.1], found to be active as
�1-AR antagonists. In a second step, the goal was to gain further insight into
the structural factors responsible for �1 affinity, in order to design new ligands
with increased selectivity for the �1 receptor.

A ligand-based pharmacophore building and development method was ap-
plied to rationalize the relationships between the structure of the pyridazinone
derivatives and their affinity for the �1 adrenergic receptor. This pharmacophore
model was then used as a three-dimensional query to perform a search into da-
tabases of known structures [3] with the aim of finding new hits as a starting
point for structural optimization in order to improve the selectivity profile with
respect to other G protein coupled receptors (GPCR), such as the �2 adrenergic
and the serotoninergic 5-HT1A receptors.

12.2.1.1 Pharmacophore Building
Our primary interest being the search for new high-affinity ligands, we decided
to build a pharmacophore model for antagonists of the �1-AR and in the first
step did not consider any selectivity criteria between the �1-AR subtypes and be-
tween �1-AR and other GPCR.

The training set for pharmacophore development was chosen according to
the Catalyst [4] guidelines (further information on the rules for picking training
set compounds can be found at the Accelrys web site [5]). Fourteen molecules
were selected from our own class of piperazine-pyridazinone derivatives (with
affinity values spanning over about 2.5 orders of magnitude, between 0.60 nM,
found for compound 1, and 180 nM, found for compound 2). Additional com-
pounds were selected among �1-AR antagonists reported in the literature. A
large number of compounds were found with a biological behavior appropriate
for our purposes. However, to ensure the highest homogeneity in the biological
data with respect to those of the pyridazinone derivatives (comparable pharma-
cological protocols used to evaluate �1-AR affinity of such compounds), two
constraints were applied to select training set compounds from the literature:
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Table 12.1 Structure and affinity of representative arylpiperazines discussed in the text.

Compound Heterocyclic moiety n X Ki (nM) a) Ref.

1 4 2-OMe �1 0.60 (1.8) 3

2 4 2-OMe �1 180 (88) 3

3 7 2-OMe �1 1.4 (9.7) 3

4 7 2-OiPr �1 0.052 10, 11

5 2 2-OMe �1 0.21 (0.11)
�1d 0.36 (0.33)

3, 18

6 2 4-cyclohexyl �1d 2000 (1810) 18

7 1 2-OMe �1 2396 (1200) 9b, 3

8, trazodone 3 3-Cl �1 281 (220) 3, 14

9 4 2-OMe �1 1.1 (1.3) b) 16, 17

10 4 2-OMe �1 0.9 (0.2) c) 16, 17



(i) the antagonist activity on �1-AR was tested on rat cortex homogenates; and
(ii) inhibition constants (Ki) were calculated according to the Cheng–Prusoff
equation [6]: Ki = IC50/[1+([L]/Kd)], where IC50 is the concentration of the tested
compound that produced a 50% inhibition of specific [3H]prazosin binding to
�1-AR, [L] is the ligand concentration and Kd is its dissociation constant. Kd of
labeled prazosin binding to �1-AR from rat cortex membranes was 0.24 nM.

As a result, 10 additional compounds were added to obtain the final training
set constituted by a total of 24 structures. Biological data associated with these
compounds, expressed as Ki, ranged between 0.21 nM, found for compound 5,
and 2396 nM, found for compound 7 (Table 12.1). We assumed that all these
compounds were acting through the same mechanism of action at the same
binding site.

With no experimental data at hand (X-ray crystallographic atomic coordinates,
NMR structure data, etc.) describing the biologically relevant conformations of
the selected compounds, conformation ensembles of each compound were gener-
ated with the program MacroModel [7], within a range of 20 kcal mol–1 above the
calculated global minimum energy conformation. At the time of this work, the
generation of conformers with third-party software was clearly indicated since
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Table 12.1 (continued)

Compound Heterocyclic moiety n X Ki (nM) a) Ref.

11 4 2-OMe �1d 16 (24) 24

12 2 2-OMe �1d 1318 (1096) 24

13 4 2,5-diCl �1d 0.67 (0.33) 19

14 3 2-OCH2CF3 �1d 2.0 (3.1) 21

a) Estimated and predicted affinity values calculated by Catalyst for the training set
and test set, respectively, are given in parentheses.

b) The affinity of this compound towards 5-HT1A receptor was 315 nM, with a
5-HT1A/�1-AR ratio of 286.

c) The affinity of this compound towards 5-HT1A receptor was 253 nM, with a
5-HT1A/�1-AR ratio of 281.



within the Catalyst 4.5-Confirm module, conformational models of piperazine de-
rivatives were misleading: owing to the limitations of the built-in poling algo-
rithm, the correct identification of a diequatorial substituent arrangement within
the 1,4-disubstituted piperazine ring was not feasible [8]. However, it should be
mentioned that in recent Confirm versions this problem has been resolved.

Compounds and their conformational models were imported to Catalyst and
subjected to the HypoGen routine to build chemical feature-based pharmaco-
phore models using “hydrogen bond acceptor lipid” (HBA), “hydrogen bond do-
nor” (HBD), “positive ionizable” (PI), “ring aromatic” (RA) and “hydrophobic”
(HY) as possible features. Two additional constraints were set: (i) because of the
molecular flexibility and functional complexity of the training set, only pharma-
cophores containing five features should be considered; and (ii) the program
was forced to include a positive ionizable feature in the composition of hypoth-
eses, on the basis of the literature reporting a basic atom (usually a nitrogen) as
a critical structural determinant for �1-AR antagonistic activity.

12.2.1.2 Pharmacophore Analysis
The pharmacophore generation routine provides the user with a series of param-
eters that allow for a preliminary evaluation of the statistical significance of the
pharmacophoric hypotheses generated. Using the hypothesis cost function analy-
sis, based on the simplicity of the models and on their capacity for predicting the
affinity of the molecule with a small deviation from the experimentally deter-
mined value, we could determine that the SAR signal within this training set
was strong. The reliability of these models was further confirmed with the correla-
tion coefficient and the root mean square deviation of affinity data (r = 0.92 and
r.m.s.d.= 0.89, respectively, for the first-ranked hypothesis). Using the top-scoring
pharmacophore, all but one compound in this training set showed a deviation be-
tween experimental and predicted affinity values of <3. The sole exception of a 7-
fold difference was found for compound 3 (Table 12.1), indicating an impressive
and reliable ability of the pharmacophore model to estimate affinities of the train-
ing set compounds toward �1-AR.

The most active compound in the training set (5) was able to map all the
pharmacophoric elements of the model (Figure 12.1). The o-methoxyphenyl sub-
stituent matched the hydrophobic moiety of the model constituted by both HY1
and HY2, whereas the most basic nitrogen atom of the piperazine ring mapped
the positively ionizable group, PI. The terminal condensed heterocyclic system
satisfied both the hydrogen-bond acceptor feature with one of its carbonyl
groups and with its distal phenyl ring corresponding to the hydrophobic region
HY3. In such an orientation, the estimated affinity of 0.11 nM was in very good
agreement with the experimental value (0.21 nM). The strong biological effect
of this molecule suggested that it possesses many or all of the molecular fea-
tures required for affinity and that, moreover, the pharmacophore model cor-
rectly estimated all the functions necessary for the major interactions between
antagonists and receptor.
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Superposition of a representative example of the pyridazinone-piperazine deri-
vatives (compound 1, the most active derivative belonging to the first generation
of pyridazinones from our research group) on the model showed an orientation
for the arylpiperazine portion similar to that found for the best antagonist (Fig-
ure 12.2).

In fact, the HY1–HY2–PI system of features was occupied by the ortho-substi-
tuted phenylpiperazine moiety. Differently, in order to present a binding pattern
similar to that for compound 5 (BA, HY3), this class of compounds was charac-
terized by an “extra-size” portion of the molecule compared with the best antag-
onist and other small compounds. In a first orientation, this extra-size was re-
presented by the methoxyphenoxyethyl or furoyl portion of the molecule,
whereas in a second orientation, the extra-size moiety was the piperazinyl ring
bound to the pyridazinone moiety. The fact that small and very active ligands
have been found to overlap the pharmacophoric model perfectly suggested that
the extra-size portion of the pyridazinone derivatives is as a chemical feature
unnecessary for affinity, probably representing a molecular portion able to con-
tact particular regions of the receptor assigned to modulate the biological prop-
erties of these compounds.
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Fig. 12.1 Compound 5 (with the highest �1-AR affinity among
the training set compounds) superposed on the pharmaco-
phoric model for �1-AR antagonists.

Fig. 12.2 Matching between compound 1 and the pharmaco-
phoric model for �1-AR antagonists. In this orientation, the
extra-size portion of the molecule is represented by the piper-
azine ring linked to the pyridazinone moiety.



Taken together, these considerations suggested that a high-affinity �1-AR an-
tagonist should be characterized by the following three-dimensional structural
properties: (i) a substituted phenyl ring (preferably at the ortho position) is re-
quired to interact with the HY1–HY2 hydrophobic regions of the model, (ii) a
basic, positively ionizable nitrogen atom is necessary to interact with a carboxyl-
ate group of an aspartic residue on the third transmembrane helix of the recep-
tor, (iii) a polar group, part of the terminal heterocyclic moiety, corresponding to
the hydrogen-bond acceptor feature of the model and (iv) an additional hydro-
phobic region of the model (HY3) accommodating (portions of) the terminal
(heterocyclic) moieties. These results are in good agreement with the generally
accepted statement, originally described through the DeMarinis pharmacophore
model, that an �1-AR antagonist interacts with the corresponding receptor with
a three-pocket binding pattern [9]: the most important structural element is a
protonated nitrogen atom, while the remaining molecular portions of the mole-
cule fit two binding pockets almost symmetrically located with respect to the
positively ionizable group.

12.2.1.3 Validation of the Pharmacophore Model
In order to assess the statistical significance of the model, a randomization trial
procedure (called catScramble) derived from the Fischer method was performed.
Results after scrambling affinity values showed that there is at least a 95%
chance that the best model reports a true correlation between structural and bio-
logical data.

In addition to the above-mentioned validation test, an independent test set of
compounds (11 pyridazinone derivatives and six molecules collected from the
literature) was used to assess further the validity and predictive power of the
pharmacophore hypothesis. Test compounds were selected based on the same
criteria under which the training set molecules were chosen with special atten-
tion that affinity values had been derived from the same biological assay (ability
to displace radiolabeled prazosin from �1-AR on rat cerebral cortex). This addi-
tional validation step confirmed the high predictive power of the pharmaco-
phore [3]. A strong point of this model is that it has accommodated much of
the structure–affinity relationships of �1-AR antagonists belonging to the arylpi-
perazine class. The importance of the substitution in the ortho position has
emerged, in addition to the influence of the terminal heterocyclic moiety in de-
fining the �1-AR antagonist activity. Finally, the distance between the arylpipera-
zine and the terminal fragment were demonstrated to be crucial for affinity.
Taken together, all these findings suggested slight modifications of parent com-
pounds such as 1–3. Variations of the arylpiperazine scaffold (i.e. the insertion
on the phenyl ring of substituents larger than a methoxy group, such as an
ethoxy or isopropyloxy moiety, better filling the HY1 region of the pharmaco-
phore model), associated with the presence of structural features profitable for
affinity towards �1-AR (such as the furoyl moiety as the terminal molecular por-
tion and a heptyl spacer) led to the discovery of ligands with affinity in the very

12.2 Building Pharmacophore Models Able to Account for the Molecular Features 259



low nanomolar range. As an example of the utility of our first model, com-
pound 4 bearing an isopropyloxyphenylpiperazine and a furoylpyridazinone as
the terminal heterocyclic moiety was later found to exhibit an even lower affini-
ty toward �1-AR (0.052 nM, see Table 12.1) [10, 11].

12.2.1.4 Hit Search Through Database Mining
Having available a reliable and robust pharmacophore model [3], it was used as
a three-dimensional query to filter databases of known structures (such as the
NCI, Maybridge and MiniBioByte collections, provided by Accelrys along with
Catalyst) and possibly to find new and original structural motifs able to fulfil
the functional and spatial constraints imposed by the model itself. The database
search was also meant to assess further the validity of the model. Among the
486 compounds extracted from the databases (about 0.27% of the total), the
pharmacophore model identified compounds known to have a relevant �1-AR af-
finity and characterized by different scaffolds. Examples such as carpipramine
(a classical 6–7–6 tricyclic antidepressant) [12] and ergotamine [13] have been re-
ported as �1 adrenoceptor blockers. Trazodone [14] (8, Table 12.1) and its open
analog etoperidone [15], characterized by anti-�1-adrenergic activity expressed as
the ability to displace tritiated prazosin from �1-AR in the rat cortical mem-
branes, were also picked up by the pharmacophore search procedure. Although
the affinity of trazodone towards �1-AR was not of great interest – low micromo-
lar range (0.28 �M) – its structure is worthy of further investigation. The model
predicted the affinity of such a compound (0.22 �M) in good agreement with
the experimental value, suggesting that the poor affinity was due to partial map-
ping of the m-chlorophenyl ring to the HY1–HY2 hydrophobic part of the phar-
macophore, together with an incomplete fit to the terminal HY3 feature. In
other words, the structure of trazodone, although possessing the chemical fea-
tures to map all the pharmacophoric regions, suffers from the presence of a re-
duced length spacer between the phenylpiperazine moiety and the terminal het-
erocycle. On the basis of these results, in an effort to improve the adrenoceptor
binding properties of trazodone and taking into account the suggestions of the
SAR data for �1-AR antagonists (i.e. the role of the ortho substitution on the
phenyl ring bound to the piperazine ring, the influence of the alkyl spacer
length and the existence of an extra-size molecular portion in compounds simi-
lar to arylpiperazinylalkylpyridazinones), the structure of trazodone was modi-
fied to meet the three-dimensional structural requirements imposed by our
pharmacophore model for �1-AR antagonists. The distance between the phenyl-
piperazine ring and the terminal moiety was increased either by inserting a pyr-
idazinone ring directly linked to the terminal moiety or by lengthening the alkyl
spacer up to a seven-membered chain. The terminal system of trazodone was
simplified in an imidazole, benzimidazole and indole nucleus, while the substi-
tuents and substitution pattern on the phenyl ring attached to the piperazine
were varied in several ways (i.e. o-methoxy and o-chloro instead of the m-chloro
substituent of trazodone). As a result of this structural optimization [16, 17], we
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obtained derivatives with affinity values for �1-AR comparable to those of the
parent compounds. While these findings partially disappointed our expectations
of finding compounds with improved affinity, the biological profile of the new
compounds was noteworthy. In fact, two of the new arylpiperazines (9 and 10,
Table 12.1) were characterized by 5-HT1A/�1 affinity ratios of 286 and 139, re-
spectively. This increased selectivity ratio highlighted the importance of the new
arylpiperazines, since the development of novel selective and potent �1-AR an-
tagonists bearing those chemical features is still a difficult task. In fact, o-meth-
oxy- or o-chlorophenylpiperazinyl derivatives with an alkyl spacer of three or
four methylene units, characterized by appreciable affinity for �1-AR, are usually
good ligands also for the 5-HT1A serotoninergic receptor and therefore hinder-
ing �1 selectivity.

12.2.2
Towards a Pharmacophore Model for the �1d-AR Subtype

12.2.2.1 A Preliminary Model
The five-feature pharmacophore described above was compared with theoretical
three-dimensional structure models of the complexes between pyridazinone in-
hibitors and the three �1-AR subtypes derived from molecular dynamics simula-
tions [9b]. However, only a qualitative comparison could made between these
complexes and the pharmacophore model, since no structural information (geo-
metric constraints between the structural elements of the complexes) was avail-
able. In agreement with both the DeMarinis model [9a] and the model we de-
veloped for �1-AR antagonists [3], each of the complexes showed a three-subsite
binding motif accommodating the inhibitors: (i) a hydrophobic pocket, corre-
sponding to the HY1–HY2 system of the pharmacophore, to accommodate the
substituted phenyl ring attached to the piperazine; (ii) an aspartic acid of the
third transmembrane domain, to accommodate the most basic nitrogen atom of
the piperazine ring through a hydrogen-bond interaction; and (iii) a polar bind-
ing pocket, to accommodate, in turn, the pyridazinone or the isoxazolopyridazi-
none moiety of the inhibitor. In particular, the complex representing the struc-
ture of the �1d-AR showed a hydrogen-bond interaction between the carbonyl
group of the pyridazinone ring of the inhibitors and an arginine residue in the
seventh transmembrane domain, comparable to the interaction of the pyridazi-
none carbonyl group with the hydrogen-bond acceptor feature of the pharmaco-
phoric model.

These considerations suggested that our model incorporates the most relevant
structural features of the inhibitors of the �1d adrenoceptor subtype.

To test this hypothesis, we investigated a new series of phenylpiperazines,
bearing a pyrimido[5,4-d]indolo group as the terminal heterocyclic moiety like
compound 5, showing preferential affinity for the �1d-AR subtype. A selection
of 16 compounds, with affinity values spanning over 3.5 orders of magnitude,
was used to generate a set of 10 five-feature pharmacophore hypotheses [18]
that we compared with the previously described five-feature pharmacophoric
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model for �1-AR antagonists. A hierarchical cluster analysis of the pharmaco-
phores showed that models 1–3 shared the same features at very similar spatial
locations, suggesting that they could be considered as equivalent to each other.
On the other hand, the fourth model showed a different feature composition
and belonged to a different cluster. However, it was noted that for many of the
compounds used to generate the models, the same conformer of each com-
pound matched either the first or the fourth hypothesis with the highest fit val-
ue. This evidence, combined with the fact that models 1 and 4 shared four out
of five pairs of features located almost at the same positions in the three-dimen-
sional space, led us to merge the two models to obtain a new six-feature phar-
macophore model (Figure 12.3, upper left corner).

The major difference between this model and the original pharmacophore for
�1-AR antagonists was the presence of a second hydrogen-bond acceptor feature,
while the remaining features underwent only a slight variation of their spatial
locations. The ‘Regress Hypothesis’ routine of Catalyst was then subsequently
used to allow the model to estimate and predict the affinity of compounds of
(and external to) the training set. A preliminary evaluation of the predictive
properties of the new model showed that affinity values for several pyrimido-
indoles were estimated in very good agreement with the experimental data. A
correlation coefficient of 0.91 highlighted the power of the model in estimating
affinity values of the whole training set of 16 compounds. Moreover, the model
was also able to predict well the affinity of �1d-AR inhibitors taken from the lit-
erature, such as SNAP 8719 (predicted 6.2 nM; determined 1.6 nM) and BMY
7378 (predicted 1.9 nM; determined 6.3 nM), whereas the affinities of smaller
compounds, such as SKF 104856 (predicted 86 000 nM; determined 1.6 nM) and
discretamine (predicted 14000 nM; determined 25 nM), were underestimated.
The main reason for the poor predictions was the inability of the smaller com-
pounds to attain all the pharmacophore features as a consequence of their over-
all reduced size.
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Fig. 12.3 Comparison between the first six-feature pharmaco-
phoric model for �1d-AR antagonists and the improved five-
feature pharmacophoric model for the same �1-AR subtype
antagonists.



Although this model was characterized by excellent statistical parameters and
was able to predict affinity data of a large test set also containing well-known
�1d-AR inhibitors (such as BMY 7378, SNAP 8719 and additional compounds
from the literature), it suffered from the inability to rationalize variations in
affinity due to different substituents at the para position of the phenyl ring
attached to the piperazine nucleus of the pyrimido[5,4-d]indole. Moreover, from
a recent report based on molecular docking and dynamics simulations on imido
derivatives [19], two suggestions arose that could be used for building a second-
generation pharmacophore model for �1d-AR antagonists. In particular, the
authors stated that two hydrogen bonds involving both the carbonyl groups of
the glutarimido moiety were unlikely to occur at the same time, in disagree-
ment with our pharmacophoric model for �1d-AR inhibitors (see Figure 12.3).
In addition, one of the most relevant interactions resulting from the molec-
ular dynamics calculations was found to be an aromatic contact between the
2,5-dichlorophenyl substituent and a Phe residue of the �1d-AR model. It is
described in our pharmacophore as a more generic hydrophobic interaction
involving the substituted phenyl ring attached to the piperazine nucleus. All
these considerations prompted us to retrace the steps performed to build the
pharmacophore model for �1d-AR inhibitors and check for any possibility of im-
proving it.

It should be mentioned that preliminary calculations to generate the pharma-
cophore model for �1d-AR antagonists [18] produced models that should be re-
analyzed in this context, because they were in partial agreement with what was
reported in the literature [19]. In particular, (i) the six-feature pharmacophore
for �1d-AR inhibitors was obtained by merging two complementary five-feature
models, one of them containing only one hydrogen-bond acceptor group, and
(ii) a similar pharmacophore model with an equal number of chemical features
(i.e. five) and similar physicochemical properties (i.e. hydrogen-bond acceptor,
hydrophobic, a positive ionizable group and similar distribution in the three-di-
mensional space) was also obtained by using the HipHop routine implemented
in Catalyst (not shown). However, it was characterized by the presence of a ring
aromatic feature (belonging to an RA–HY pair of features and mapping the phe-
nyl ring linked to the piperazine nucleus and its ortho substituent) instead of
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Fig. 12.4 Superposition pathway of the glutarimido derivative 11
into the new pharmacophoric hypothesis for �1d-AR antagonists.



one of the hydrophobics constituting the HY1–HY2 system of our final model
for �1d-AR antagonists. Taken together, these data highlighted that pharmaco-
phore models for �1d-AR antagonists, characterized by only one hydrogen-bond
acceptor group (corresponding to a carbonyl moiety of a pyridinedione ring)
and by an aromatic interaction (involving the phenyl ring attached to the pipera-
zine nucleus), were already hypothesized during our previous calculations.
However, they have not been investigated further because of the lower statistical
quality in comparison with the other pharmacophore models found during the
same calculation runs.

12.2.2.2 An Improved (Simplified) Model
Based on the above-mentioned considerations, we planned to use the same
training set (16 compounds) from which the first pharmacophore for �1d-AR an-
tagonists was derived, enlarged with five compounds belonging to a new class
of glutarimido derivatives such as 11, to re-run the hypothesis generation (Hy-
poGen) routine within Catalyst. The new training set consisted of 21 com-
pounds with affinity data for �1d-AR spanning over five orders of magnitude
(from 0.36 nM found for compound 5 to 2000 nM found for compound 6). Only
five-feature models were requested. The first-ranked pharmacophore showed a
correlation of 0.94 between actual (experimental) and estimated affinity and was
constituted by two hydrophobic regions (HY1 and HY2), a hydrogen-bond ac-
ceptor group (HBA), an aromatic ring (RA) and a positively ionizable feature
(PI). A comparison between the new model and the previous pharmacophore
for �1d-AR antagonists (Figure 12.3) showed several common features. In partic-
ular, the HY1, PI, HBA1 and HY3 regions of the previous model corresponded
to identical features of the new model (HY1, PI, HBA1 and HY2, respectively),
with almost the same 3D constraints. An aromatic ring was found in the new
model instead of the HY2 feature of the previous pharmacophore. Finally,
HBA2 of the previous model disappeared and was not replaced by any other
feature in the new model, decreasing the total number of features from six to
five. It was important to note that the improved model for �1d-AR inhibitors
was very similar to the original pharmacophoric model for �1-AR inhibitors,
supporting the hypothesis that the last model incorporated the main features
that a compound should possess to show a good affinity toward �1d adrenocep-
tors.

Figure 12.4 summarizes the superposition pattern of the glutarimido deriva-
tives on the new pharmacophore model for �1d-AR antagonists. These com-
pounds show the o-methoxyphenyl group matching the HY1–RA system,
whereas the most basic nitrogen atom of the piperazine ring maps to the posi-
tively ionizable feature (PI) of the model. The remaining two features are
mapped by the 4-substituted piperidinedione system that represents the termi-
nal heterocyclic portion of this family of compounds. In particular, while the hy-
drogen-bond acceptor group (HBA) is matched by one of the carbonyl moieties,
the terminal hydrophobic region (HY2) accommodates the phenyl ring. It is im-
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portant to note that the glutarimido ring was found in the sofa conformation
with the C3 atom pointing out of the plane defined by the remaining atoms.
Moreover, the phenyl group at position 3 assumes the so-called equatorial paral-
lel conformation in the 4-phenyl derivatives. This is different from the 4-phenyl-
4-methyl derivatives where an equatorial perpendicular conformation is gener-
ally found, in agreement with data reported for phenylglutaric anhydride deriva-
tives by Altona and co-workers [20]. The pharmacophore was able to account for
the variation of affinity resulting from different alkyl spacers. In fact, when the
polymethylene chain was reduced from five, four or three carbon atoms to an
ethyl spacer, the affinity underwent a marked decrease. This was an unexpected
result, if one compares affinity data of 12 and 5, sharing the o-methoxyphenylpi-
perazinylalkyl scaffold and a six-membered terminal heterocyclic ring bearing
two carbonyl groups at positions 2 and 6. Inspection of the superposition pat-
tern of these compounds reveals good complementarity between the planar tri-
cyclic moiety of 5 and the HBA–HY2 system, whereas the non-planar phenyl-
glutarimide group of 12 showed little matching with both of the two terminal
features of the model. This finding suggests that the shape of the terminal moi-
ety could be crucial in influencing the affinity of these compounds for �1d-AR
(see below). On the other hand, when the distance between the arylpiperazine
moiety and the terminal heterocyclic group increases, profitable interactions be-
tween the phenylglutarimide and the model are found (as an example, com-
pound 11 shows an affinity of 16 nM).

Replacement of the o-methoxy group at the phenylpiperazino moiety with a
chlorine atom led to comparable or slightly lower affinity, in agreement with
many other experimental data reported in the literature. This result is validated
by the model, showing that both the methoxy and chlorine groups interacted in
a similar way with the HY1 pharmacophoric feature.

To check the reliability of the model and to assess its predictive power, a vali-
dation step was performed by predicting affinity data for a large test set of com-
pounds collected from three different sources. (i) Glutarimido derivatives be-
longing to the same class of compounds used to build the training set were
evaluated against the pharmacophore model to predicting their affinity values.
The results obtained were in good agreement with experimental data, support-
ing the pharmacophore hypothesis. (ii) The new model overcomes the major
limitation of the previous model (inability to evaluate affinity of compounds
bearing para substituents on the phenyl ring attached to the piperazine nu-
cleus). In fact, owing to a slightly different location of the features (with respect
to the original pharmacophore model) mapped by the phenylpiperazinyl system
(RA and HY1), the new pharmacophore is able to account for the influence of
para substituents on affinity. As an example, derivatives of 6 bearing an isopro-
pyl, tert-butyl, sec-butyl and butyl group as the X substituent, were predicted to
exhibit an affinity of 37, 17, 30 and 40 nM, respectively. This is in good agree-
ment with experimental data (35, 20, 63 and 251 nM, respectively) [18]. In these
cases, whereas the basic nitrogen and the terminal tricyclic moiety showed a
precise superposition to PI, HBA and HY2, respectively, only a partial fit was
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found for both RA and HY1 by the phenyl ring and its para substituent, respec-
tively. (iii) Some imido derivatives such as 13, recently reported in the literature
[19], structurally similar to the compounds described in this paper, were also
used as part of the test set to check the robustness of the pharmacophore mod-
el. Here also the importance of the alkyl spacer in determining affinity data was
evidenced and represented by the pharmacophore model. Compounds with an
ethyl spacer were predicted to be significantly less active than compounds with
propyl and butyl spacers. Calculated (predicted) affinities for such compounds
were comparable to the experimental data (Table 12.1), confirming the high pre-
dictivity of the model. The power of the pharmacophore model to predict cor-
rectly classes of compounds different from those constituting the training set
was further assessed by calculating the affinity value for several arylpiperazine
derivatives bearing a substituted uracil moiety as the terminal heterocyclic
group, such as 14 [21]. The predicted affinity for five compounds showed by an
error factor (ratio between calculated and actual affinity values or vice versa) be-
tween 1.5 and 3.0 (as an example, the affinity of 14 was calculated to be 3.1 nM,
in agreement with the experimental value of 2.0 nM). Although the affinity val-
ues of these literature compounds and our derivatives were the result of differ-
ent experimental measurements (displacement of [3H]prazosin from cloned
human �1d-AR in membranes from CHO cells versus displacement of [125I]BE
2254 from cloned human �1d-AR in membranes from HEK293 cells, respec-
tively), the good predictive power demonstrated by the pharmacophore model
for the literature compounds further supported the model itself.

In summary, the new pharmacophore model for �1d-AR antagonist was able
to account for the major structure–activity relationships of substituted phenyl pi-
perazinylalkyl derivatives with variable heterocycles as the terminal portions.
The model clearly highlighted that the distance between the arylpiperazine moi-
ety and the terminal heterocyclic fragment was a critical element to influence
the affinity. The high affinity of compounds belonging to the class of compound
5 were also rationalized in terms of the shape of the terminal moiety. Planar
systems (as in 5) allowed for good interactions with all the pharmacophoric fea-
tures, even when the spacer was short (two carbon atoms), whereas compounds
with a non-planar phenylglutarimido moiety required at least a propyl spacer to
interact profitably with the pharmacophore regions. However, as previously hy-
pothesized independently by ourselves and other research groups on the basis
of SAR analyses, in addition to the shape of the terminal heterocyclic moiety,
the size and length of the alkyl spacer simultaneously play an important role in
determining affinity of a compound for �1d-AR. As an example, many of the
above-mentioned imido derivatives [19], characterized by the spiro moiety of
BMY 7378 as the terminal fragment bound to an ethyl spacer, showed affinity
values for �1d-AR comparable to 5 and higher than those found for compounds
such as 12. This finding evidenced that a combination of the spiro-glutarimido
moiety with an ethyl spacer was more profitable for affinity than a phenylglutar-
imido moiety linked to the same spacer, suggesting that the smaller size of
compound 5 in combination with a short chain was preferred for affinity. On
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the other hand, on lengthening the spacer, the affinity values increased for com-
pounds belonging to the same class as compound 12, whereas no significant
improvement (or slight decrease) of affinity was found for imido derivatives
[19].

The different spatial position of the HY1–RA features (relative to the HY1–
HY2 features of the first model for �1d-AR antagonists) allowed a better predic-
tion of affinity values for compounds bearing a para substituent at the phenyl
ring attached to the piperazine nucleus.

In the recent literature, the three-dimensional theoretical models determined
by molecular dynamics calculations of the complexes between compounds struc-
turally related to BMY 7378 and the three �1-AR subtypes were described [19]. A
qualitative comparison between their structures and the new pharmacophore
model for �1d-AR antagonists showed several common features. An expected,
strong electrostatic interaction between the basic nitrogen atom of the ligand
and an aspartate positioned in the third transmembrane domain (Asp176)
{sequence numbering is referred to the �1d-adrenergic receptor (572 residues)
deposited at the Human Protein Reference Database [22]} has been found. This
interaction was also present in the pharmacophore model (PI feature). An addi-
tional common structural feature represented by a hydrophobic pocket to ac-
commodate the substituted arylpiperazine moiety of inhibitors is present. This
cavity corresponds to both the HY1 and RA features of our new model. In this
region, one of the most profitable interactions was represented by an aromatic
contact between the dichlorophenyl ring of the of the arylpiperazine moiety of
inhibitors with Phe364 of the receptor (the two phenyl rings were oriented in
such a way to allow for a possible T tilted interaction). This interaction is per-
fectly mimicked by the RA feature of the model mapping the phenyl substituent
at the piperazine ring of our compounds. Moreover, hydrophobic residues such
as Val177 could correspond to the HY1 feature of the pharmacophore, interact-
ing with the methoxy or chloro group at the ortho position of the phenyl ring
bound to the piperazine nucleus. An additional binding pocket was described,
allowing only for one hydrogen-bond contact between one of the carbonyl
groups of the dione moiety of the inhibitors and Trp172 or/and Tyr392. The
same interaction was also found in our new pharmacophore model, one of the
carbonyl groups of the glutarimido moiety of compound analogs of 12 mapping
to the hydrogen-bond acceptor. Finally, a series of amino acids surrounded the
terminal heterocyclic moiety of the inhibitors. In particular, the side-chains of
Glu157 and Lys385 are in contact (van der Waals interactions) with the edge of
the ligands, similarly to the pharmacophore model, where the HY3 feature is
mapped by the phenyl ring attached to the glutarimido moiety. Another theoret-
ical model of the interactions between the �1d-AR and one of its inhibitors (dis-
cretamine), reported by Carrieri et al. [23], is in good agreement with our new
pharmacophore model. This model shows a hydrophobic (aromatic) contact be-
tween the inhibitors and Phe364, a salt bridge involving Asp176 and, finally, a
weak hydrogen bond (or a polar interaction) with the receptor. These elements
are reported as being the critical features for high affinity to �1d-AR.
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All these facts lead to the conclusion that our new five-feature pharmacophore
model should be a good abstract representation of the most important structural
elements that a compound should possess for high �1d adrenoceptor affinity.
Similarity between the HBA and PI features of the pharmacophore model with
parts of the theoretical receptor could be also considered as an additional valida-
tion of our model.

In conclusion, we have reported how, using a stepwise approach, a generic phar-
macophore model for �1-AR antagonists has been evolved into a model able to ra-
tionalize the SAR of arylpiperazine derivatives for the �1d-AR subtype. Using a
classical computational protocol, the next step of this work will be the use of this
pharmacophoric model as a three-dimensional search query to mine databases of
virtual and/or commercial compounds, aiming at finding new hits with (im-
proved) affinity toward �1d-AR. As a possible extension, pharmacophore models
could also be built for the remaining two �1-AR subtypes (namely �1a-AR and
�1b-AR) and compared with the model that we obtained for �1d-AR antagonist,
with the purpose of understanding the reason(s) for �1-AR subtype selectivity.

12.3
Use of Excluded Volume Features in the Rationalization of the Activity Data
of Azole Antifungal Agents

As already stated in the Introduction, a problem that sometimes arises in phar-
macophore approaches is the need to take into account possible adverse steric
interactions between inactive compounds in a dataset and the target protein
counterpart. In these situations, the definition of ligand-forbidden zones by
means of the addition of excluded volume spheres to a pharmacophore is nowa-
days considered a reasonable and effective improvement.

12.3.1
Excluded Volume Spheres in Structure-based and Ligand-based Pharmacophore
Studies

Further to an early paper by Greenidge et al. [25], excluded volume features have
been included, as a rule, in the course of the generation of protein-based phar-
macophores, either to describe the shape of the binding cavity [26] or to elimi-
nate compounds giving rise to steric conflicts with key residues of the target
[27, 28]. Greenidge and co-workers exploited for the first time the knowledge of
a receptor X-ray structure (the one of the complexes of rat thyroid hormone re-
ceptor with few ligands) to investigate the utility of augmenting a structure-
based pharmacophore with hundreds of ligand-inaccessible volumes, used to de-
fine the demarcation of the active site [25]. Using this kind of refinement, the
Maybridge database was efficiently searched (both in a timely manner and also
considering specificity aspects). The number of false positives obtained was re-
duced by a factor of 2–5, with the clear effect of pruning and focusing the hit
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list. A different strategy was adopted – to reach the same goal – in a recent
pharmacophore study on influenza virus neuraminidase (NA) inhibitors by
Steindl and Langer [28]. In this case, the sole information about a few regions
forbidden to the ligands has in fact been incorporated in the software Catalyst,
during the refinement of structure-based pharmacophore hypotheses, with the
aim of introducing enhanced steric selectivity. Nevertheless, the very few added
excluded volume spheres (five), combined with the creation of a set of multiple
hypotheses linked by defined connection strategies, have enabled the number of
hits extracted from the Derwent World Drug Index to be sensibly reduced. Fi-
nally, in a dissimilar approach aimed at developing a “dynamic” receptor-based
pharmacophore model for HIV-1 integrase inhibitors, Carlson et al. [27] manu-
ally introduced three excluded volume spheres with radii of 1.5 Å, centered on
the side-chains of three essential residues of the protein. In this case, however,
excluded volume spheres were not so used as an active site surface for volume
constraint purposes, but rather as a tool suitable to eliminate some unreason-
able modes of alignment of one or more of the compounds under investigation.

The issue of including information about ligand–receptor steric clashes has
recently been taken into consideration also in the case of ligand-based pharma-
cophore studies. Accurate prediction of the activities of less active compounds
in a dataset, with pharmacophore features in common with other active ones,
in fact, has sometimes been reported to be a problem, where inactivity is prob-
ably due to steric clashes with the target. With regard to this subject, an inter-
esting paper appeared in 2004, in which the construction of a ligand-based
pharmacophore model for inhibitors of Plasmodium falciparum cyclin-dependent
protein kinases (CDKs) and its positive validation by the discovery of different
classes of novel inhibitors is described [29]. A Catalyst pharmacophore model
composed by four features has been developed, without any structural analysis
of the known X-ray CDK2 structure. The pharmacophore has been then used as
a template to search an in-house database that has resulted in the discovery of
16 new potent inhibitors. Notably, the inhibitory activity of some of the new de-
rivatives has been reported to be predicted “exceptionally well” by the model. In
fact, and acknowledged in the paper, the activities of 80% of the test set com-
pounds (measured as a minimum inhibitory concentration), and also those of
100% of the database-retrieved compounds, are slightly overestimated by the
model, which does not contain any excluded volume.

In a paper published in 2000 by Norinder [30], Catalyst was used for the first
time to build a common feature pharmacophore hypothesis for HIV-1 protease
inhibitors, which was then refined using in-house software (HypoOpt), after
having added to it some hundreds of excluded volume spheres. These were ac-
tually derived from the X-ray structure of an inhibitor complexed to the enzyme.
The aim of the approach was to obtain a computational model with some im-
proved predictive power with respect to the corresponding hypothesis derived
without receptor information.

The possibility of adding automatically excluded volume spheres to ligand-
based pharmacophores, thus accounting for steric hindrance problems, has re-
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cently been tackled by Accelrys by the implementation of the HypoRefine algo-
rithm into the software Catalyst [31]. This has been found to yield improved re-
gression coefficients and potentially more predictive models, by the strategic
placement of excluded volume spheres that can approximate steric repulsive in-
teractions, during a simulated annealing optimization of quantitative pharmaco-
phore models. The original quantitative HypoGen algorithm, in fact, has occa-
sionally been reported to have difficulties in generating hypotheses that corre-
late well, if the steric properties of the data set make a large contribution to the
activities. In such a case, inactive compounds may well have their activities over-
predicted. One of the first ligand-based pharmacophore researches was pub-
lished in 2004 in the Journal of Chemical Information and Computer Science (in
the same issue that included the paper by Steindl and Langer on NA inhibitors
[28]), in which the Catalyst HypoRefine module was successfully exploited to
construct a pharmacophore hypothesis of some matrix metalloproteinase-1 inhi-
bitors [32]. In that paper, Tsai and Lin state that a “top pharmacophore hypoth-
esis” has been constructed by applying Catalyst HypoRefine (assisted by mainly
a CoMSIA 3D-QSAR model), which can be used to represent the binding mode
of inhibitors inside the enzyme active site. Together with the soundness of their
results, the authors present some of the difficulties encountered in applying
Catalyst to the construction of the model, highlighting especially (as already
noted by Greenidge et al. [26]) the issue of generating reliable conformational
models for all the compounds and the difficulty of properly choosing some re-
presentative features, among the several default ones provided by the program.

12.3.2
Issues Inherent in the Rational Design of Azole Antifungal Agents

We have been involved since 1996 in computational studies of antifungal azoles
[33, 34] that inhibit Candida albicans’s cytochrome P-450-dependent enzyme lanos-
terol 14�-demethylase (CA-CYP51) and our efforts have produced remarkable re-
sults, the soundness of which has been confirmed by other workers [35]. In spite
of these attainments, however, our work has not been able to satisfy our expecta-
tions thoroughly for a long time. The outer predictivity of a ligand-based pharma-
cophore model (HYPO1) that we proposed in 2002 using the Catalyst HypoGen
algorithm [34], in fact, was recently denied (r2

pred = 0.19) when – in advance of
the computational studies subjected here to close examination – HYPO1 was
applied to predict the activity of some newly synthesized analogs (15 c–j, 16 a, b,
17 d–f, 18 a, 19 a–c, 20 a, b, 21 a and 22 a–c in Chart 12.1 and Table 12.2).

In fact, HYPO1’s fault was not surprising if one relates its framework
(HYPO1 was composed by one ad hoc defined aromatic-nitrogen-with-lone-pair
vectorial feature to simulate the coordination interaction of azole inhibitors with
the iron atom of the enzyme protoporphyrin system an three aromatic rings
[34]) to the chemical structure and antifungal activity of the new compounds.
The activity values of these molecules, in fact, were revealed to be strongly de-
pendent on the presence of a hydrophobic substituent (possibly aliphatic) on
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Chart 12.1 Structures of the azoles discussed in the text.
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Table 12.2 Experimental and estimated anti-Candida activity values for all the azoles dis-
cussed in the text (�mol mL–1).

Compound MICcpd/MICbifonazole Error

Experimental Estimated
(MOD1)

Estimated
(MOD3)

MOD1 MOD3

15a a) 0.66 1.1 0.86 1.7 1.3
15b a) 0.025 0.053 0.13 2.1 5.1
15c 0.11 0.018 0.016 –5.8 –6.7
15d a) 0.023 0.014 0.0064 –1.7 –3.6
15e a) 0.025 0.087 0.052 3.5 2.1
15f 0.031 0.041 0.26 1.3 8.3
15g a) 0.019 0.020 0.0076 1.0 –2.5
15h a) 0.043 0.031 0.063 –1.4 1.5
15i a) 0.34 0.11 0.26 –3.1 –1.3
15j a) 1.5 0.56 1.0 –2.7 –1.5
16a 0.11 0.046 0.13 –2.3 1.2
16b 0.33 0.014 0.33 –24 1.0
17a 0.92 1.0 0.58 1.1 –1.6
17b 0.28 0.034 0.60 –8.3 2.1
17c 0.31 0.016 0.063 –19 –4.9
17d 1.70 0.014 0.13 –120 –13
17e 0.15 0.011 0.045 –14 –3.3
17f a) 0.48 0.80 0.54 1.7 1.1
18a a) 0.36 0.80 0.28 2.2 –1.3
19a 2.9 0.039 0.28 –73 –10
19b 0.23 0.0090 0.33 –25 1.5
19c 0.12 0.013 0.23 –9.3 1.9
20a a) 0.19 0.054 0.13 –3.6 –1.5
20b 0.47 0.0098 0.19 –48 –2.5
21a 0.62 0.74 3.3 1.2 5.4
22a a) 0.21 1.4 0.74 6.5 3.5
22b 0.94 0.79 0.46 –1.2 –2.0
22c 1.1 0.65 0.39 –1.7 –2.8
23a a) 1.0 1.3 0.62 1.3 –1.6
23b 1.4 9.8 26 6.9 19
23c 45 1.2 4.3 –38 –10
23d 63 2.9 23 –22 –2.8
23e 51 6.3 6.6 –8.1 –7.7
23f a) 97 4.1 23 –24 –4.1
23g 7.8 1.0 11 –7.6 1.4
23h 17 8.4 30 –2.0 1.8
23i 44 1.9 32 –23 –1.4
23j a) 49 7.7 22 –6.3 –2.2
23k 23 8.0 22 –2.8 –1.0
24a a) 6.8 5.8 3.9 –1.2 –1.7
25a 2.3 1.4 21 –1.7 9.2
25b a) 1.2 1.4 1.0 1.2 –1.2
25c 7.3 1.1 0.62 –6.4 –12



the nitrogen of the pyrrole ring, while HYPO1 (characterized by three “ring aro-
matic” features plus one vector “coordination bond” feature) could not recognize
this obviousness, as it could not match such a substituent by any feature.

This being the case, a new pharmacophore modeling project was started [36]
using newly and previously synthesized azoles belonging to five different struc-
tural classes (see Chart 12.1), using Catalyst, with the purpose of bringing our
previous model up to date. During this new study, the most tricky points of our
previous computational protocol have been carefully revised, attempting to hit
at last the “predictivity” target, essential for the future rational design of possibly
active compounds. First, the definition of the coordination bond feature (UNA:
Unsubstituted Nitrogen Aromatic) has been updated. Differently than in
HYPO1, UNA has been defined as a sphere; X-ray data have demonstrated, in fact,
that the binding of azoles to CYP51 enzymes diverges to some extent from any
fixed distance and angle [37–39]. Notably, similar arguments have recently been
taken into account to develop a modified version of the docking program DOCK
suitable for CYP enzymes [40]. Second, Catalyst’s HypoRefine module has been
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Table 12.2 (continued)

Compound MICcpd/MICbifonazole Error

Experimental Estimated
(MOD1)

Estimated
(MOD3)

MOD1 MOD3

25d 2.8 1.2 0.63 –2.4 –4.4
25e a) 0.70 1.1 0.61 1.6 –1.1
25f 3.1 1.5 0.61 –2.1 –5.1
25g 2.7 1.7 0.83 –1.6 –3.3
25i 1.8 1.4 22 –1.3 12
25h a) 4.1 1.5 3.0 –2.7 –1.4
25j 1.1 1.2 0.68 1.1 –1.7
25k 1.4 1.6 3.7 1.2 2.7
26a 1.7 1.6 6.6 –1.1 3.8
26b 3.8 1.8 2.5 –2.2 –1.6
26c 63 1.1 15 –58 –4.0
26d 6.0 1.1 11 –5.5 1.7
26e 4.3 2.2 3.0 –1.9 –1.4
26f 2.2 0.86 0.52 –2.6 –4.3
26g 4.3 3.7 13 –1.2 3.0
26h 4.5 3.4 19 –1.3 4.2
26i a) 28 6.5 17 –4.4 –1.7
26j 1.3 0.82 0.18 –1.6 –7.1
26k a) 26 6.1 21 –4.2 –1.2
26l 2.8 0.74 0.92 –3.8 –3.1
Bifonazolea) 1.0 4.7 4.0 –4.7 4.0
Fluconazole a) 0.069 1.5 0.59 21 8.6
Miconazolea) 0.14 0.60 0.27 4.4 2.0

a) Training set compounds.



included in the new computational protocol, allowing hypotheses with excluded
volume spheres to be generated and thus accounting for steric hindrance prob-
lems. Finally, minimum inhibitory concentration mean values (MIC), instead of
the previously used MIC90 values [33, 34], were preferred in this study to express
the anti-Candida activities of the compounds studied (Table 12.2). The MIC values
of the whole dataset (63 derivatives plus fluconazole, miconazole and bifonazole as
the reference compounds), which cover four orders of magnitude, have been nor-
malized and formulated as MIC compound/MIC bifonazole.

The conformational models of alternative stereoisomers of all the compounds
(see above for details on the conformational search within Catalyst), to be used
for pharmacophore generation, were automatically generated by means of Cata-
lyst. The following chemical features were taken into account to build the phar-
macophoric hypotheses: UNA, hydrogen-bond acceptors (HBA), hydrogen-bond
donors (HBD), aromatic rings (RA) and hydrophobic groups (HY). Owing to
both the molecules’ flexibility and functional complexity, the hypothesis genera-
tor was constrained to report hypotheses with at least four features and to in-
clude UNA in each pharmacophore, to satisfy the key interaction between azole
inhibitors and the enzyme.

In a first attempt, two pharmacophore models were generated from two dif-
ferent training sets. The first hypothesis (MOD1, shown in Figure 12.5) was de-
rived from a general training set (see Table 12.2), conceived to maximize the in-
formation content of the whole set of studied compounds, which included mole-
cules whose activities represented all the orders of magnitude covered by each
distinct structural group. Further to this approach, the coordination interaction
plus one aromatic ring and two hydrophobic features were recognized by Cata-
lyst to have pharmacophoric relevance. The regression line based on MOD1 of
experimental versus estimated/predicted MIC exhibited a correlation coefficient
r2 = 0.84 for the training set (r.m.s.d.= 1.23).

Comparison between estimated and experimentally measured MIC values of
the compounds (see Table 12.2) showed, in the worst case, a 24-fold difference
and in most cases was less than a 2-fold difference, indicating a reliable ability
of MOD1 to estimate affinities within the training set. The execution of the
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Fig. 12.5 Compound 15g (in yellow), the most
active of the whole set, mapped on to MOD1.
Pharmacophore features are color coded: blue
for the unsubstituted aromatic nitrogen
(UNA), red for aromatic ring (RA), green for
hydrophobic (HY1 and HY2).



same analysis on the test set revealed, however, a less convincing scenario as a
fairly high correlation coefficient (r2 = 0.73) was not coupled with homogeneous
distribution of the corresponding marks around the regression line (result not
shown). The MIC values of several compounds were predicted with very high
accuracy, whereas the inhibitory potency of some derivatives was much overesti-
mated (up to two orders of magnitude) and only one compound was underesti-
mated (23b).

The prediction of the test set by MOD1 was regarded as unsatisfactory and
presumed to be the after-effect of a possible lack of quantitative correlation be-
tween MIC activity data of some inhibitors and their binding interaction into
the enzyme active site (MIC has been found to depend also on permeability
and metabolic factors) [41]. With the aim of verifying the validity of such a
guess, a reduced subset of 35 compounds out of 66 was selected for a second
pharmacophore generation experiment. The majority of the molecules from the
most sampled structural class (E in Chart 12.1) – covering four MIC orders of
magnitude – were in fact steadily overestimated by MOD1 and consequently
only the six most active molecules from this class (one order of magnitude)
were considered in this generation. A second set of pharmacophore hypotheses
was thus built, considering a training set and a test set of 20 and 15 com-
pounds, respectively, from which the pharmacophore MOD2 was selected. It
showed a relevant increase in the correlation for both the training set (r2 = 0.94,
r.m.s.d.= 0.84) and test set (r2 = 0.90); however, as was to be expected owing to
the rule whereby the training set had been selected, the correlation coefficient
decreased dramatically when all the compounds were included into an exhaus-
tive (46 compounds) test set (r2 = 0.52). MOD2 is displayed in Figure 12.6 super-
posed on 15 g.

Here, the coordination interaction plus three aromatic rings (RA1, RA2 and
RA3) and two excluded volume spheres (EV1 and EV2) were found by Catalyst
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Fig. 12.6 Compound 15g (in yellow) mapped on to
MOD2. Pharmacophore features are color coded:
blue for the unsubstituted aromatic nitrogen
(UNA), red for aromatic ring (RA1, RA2 and RA3).
In black are shown the excluded volume spheres
(EV1 and EV2).



to enhance the pharmacophore relevance. The inadequate prediction of the ex-
haustive test set by MOD2, however, clearly demonstrated its overall unreliability.

A critical comparison was then performed between this hypothesis and
MOD1 to rationalize the not entirely satisfactory results obtained up to then.
Two structural aspects of MOD2 appeared in fact to be really interesting and de-
served further consideration. The first unfavorable peculiarity was the presence
of aromatic ring features only (RA1, RA2 and RA3) to express the attractive in-
teractions of azoles with the amino acids of the active site of CYP51. This result
was clearly a computational oversight largely induced by the exclusion from the
training set of many less active compounds from the most sampled structural
class. As a consequence of that choice, in fact, Catalyst was not able to recog-
nize the relevance of the presence/absence of a pyrrole substituent (HY1 in
MOD1), peculiar to the compounds of that class. The second remarkable (favor-
ably) indication provided by MOD2 was the presence of two excluded volume
spheres (EV1 and EV2). Excluded volume spheres had in fact been chased since
the beginning of this study and their appearance supported a guess that the
average overprediction of the 42 compound test set by MOD1 was mainly due
to the lack of excluded volume spheres in that pharmacophore. Actually, neither
MOD1 nor MOD2 displayed polar features besides UNA; moreover, the possibil-
ity that steric interactions might play a relevant role in the binding of azoles
into the active site of CYP51 had already been assessed both in our previous re-
search [34], based on the lipophilicity of our compounds, and, more generally,
by other workers [42]. The analysis just described clarified at a molecular level
the reasons for the low reliability of MOD2 with respect to MOD1 and sug-
gested a possible adjustment to be made to correct our computational protocol.
Catalyst’s default SPACING parameter – that is, the minimum distance between
actual features locations – was hypothesized as the critical control parameter
that did not work properly for our set of compounds. A further and final three-
dimensional pharmacophore model (MOD3) was consequently generated, from
the first general training set, after having decreased the spacing value to 1.0 Å.
MOD3 showed an interesting increase in the correlation for both the training
set (24 compounds, r2 = 0.93, r.m.s.d.= 0.80) and the test set (42 compounds,
r2 = 0.73) with respect to MOD1. Comparison between estimated and experimen-
tal MIC values gave, in the worst case (fluconazole), an 8.5-fold difference and
in most cases was less than a 2-fold difference (see Table 12.2). Interestingly,
while the regression line based on MOD3 (shown in Figure 12.7) exhibited a
correlation coefficient for the test set equal to that given by MOD1, the distribu-
tion around the regression line was definitely more homogeneous than that
arising from MOD1, indicating a better capacity of MOD3 to predict the activ-
ities of the test set.

The MIC values of all the test set compounds were in fact predicted within
the measured order of magnitude, with the exception of three compounds
whose antifungal activity was underestimated by factors of 13, 19 and 12.

The coordination interaction, one aromatic ring, two hydrophobic features
and two excluded volume spheres make up the final model (shown in Figure
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12.8). The pharmacophore seems to be more definite, accurate, flexible and realis-
tic with respect to the Catalyst model that we proposed in our previous studies [34],
as aromatic �–� stacking interactions appear no longer to be the sole interactions
able to modulate the activities of different antifungal agents. Some key interac-
tions, and also excluded volume spheres, further to the coordination bond of azole
antifungals with the demethylase enzyme, are now highlighted. It is questionable
whether the excluded volume spheres properly represent the surrounding atoms
in the binding pocket of CA-CYP51 or, more simply, regions randomly selected by
the HypoRefine algorithm in the aligned inactive molecules far away from the ac-
tive that could not contain any topology. Nevertheless, volume spheres have helped
to improve the predictivity of MOD3 as they specify spherical spaces in the prox-
imity of the pharmacophore that could not contain any atoms or bonds and this is
a constraint preventing an advantageous matching of conformations of the less ac-
tive compounds on to the pharmacophore.

12.4
Conclusion

Both examples reported above suggest that the pharmacophoric approach pro-
vided by Catalyst could represent a useful and efficient tool available to mode-
lers working in the field of medicinal chemistry. However, it is necessary to em-
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Fig. 12.7 Regression line for MOD3. Experimental versus esti-
mated (or predicted) anti-Candida activity is reported for each
member of the training set and of the test set.



phasize that two prerequisites are required of the user to guarantee both full
control during the steps of model generation and critical evaluation of the phar-
macophoric hypothesis generated: (i) knowledge, as high as possible, of the soft-
ware routines and of the parameters that they involve and (ii) chemical good
sense that the user should have and apply to the analysis of results. In detail,
while a good knowledge of the parameters settable within pop-up menus of the
software graphical interface is usually enough to run appropriate calculations,
sometimes higher control of the software is needed in order to adjust (i.e. en-
able, disable or set) several “hidden” variables (referred to as the Catalyst param-
eters) to try to solve a specific problem. As an example, if the confAnalysis.Axia-
lEquatorialRatio parameters were available at the time the first case study was
approached, the conformational search routine of the program would have been
sufficiently efficient to treat simple compounds such as arylpiperazinyl deriva-
tives. On the other hand, the expertise of the user in the field of chemistry and
medicinal chemistry is an essential condition to analyze output data. Two exam-
ples follow to support this conclusion. The first concerns the directionality prop-
erties of hydrogen bonds. In our experience, we sometimes found that the hy-
drogen bond acceptor vector depicted by Catalyst was a prolongation of a C=O
group, in disagreement with the angular constraint required for hydrogen-bond
contacts. An additional example is represented by distorted rings (having a very
low probability of existing on the basis of a Boltzmann analysis) resulting from
the fitting of a compound into a pharmacophore hypothesis.

Taking into account these considerations (and others that lie outside the scope
of this chapter), it is undeniable that at the moment several types of software
exist (including Catalyst), based on a ligand-based drug design approach and
aimed at rationalizing in an efficient and fast way biological data, proposing
useful suggestions to improve the contacts between ligands and the correspond-
ing receptor counterpart and allowing one to identify – by database searches –
new hit compounds to be structurally optimized.
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Fig. 12.8 Compound 15g (in yellow)
mapped on to MOD3 (the final phar-
macophore). Pharmacophore features
are color coded: blue for the unsub-
stituted aromatic nitrogen (UNA),
red for aromatic ring (RA), green for
hydrophobic (HY1 and HY2). In black
are shown the excluded volume
spheres (EV1 and EV2).
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Thomas Klabunde

13.1
Introduction: GPCRs as Anti-targets

In recent years, the term anti-target has been adopted within the drug discovery
community. Several enzymes, receptors or channels were identified as the mo-
lecular basis for several severe side-effects observed for development candidates
(or even for marketed drugs) and were therefore termed anti-targets. Anti-target-
mediated side-effects can put the further development of promising clinical can-
didates at risk, hence several pharmaceutical companies have not only started to
implement appropriate in vitro assays in the early phase of the drug discovery
chain, but in addition, structural information on these anti-targets, their ligands
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Fig. 13.1 The potassium hERG channel as
anti-target within drug discovery. (a) Homol-
ogy model of hERG channel with compound
MK-499 bound [2]. (b) Histamine H1 antag-
onist terfenadine, which was found to be a
strong blocker of the hERG channel inducing

the long QT syndrome (hERG IC50 = 56 nM).
(c) Fexofenadine, a close analog of terfena-
dine, reveals no hERG channel affinity and
is successfully marketed for seasonal rhinitis
(trade name Allegra).



and structure-activity relationships is compiled and in silico tools are developed
for anti-target modeling. These computational tools can guide the chemical
optimization of novel lead series towards clinical candidates lacking anti-target-
mediated side-effects. The probably best known example of an anti-target is
the K+ channel encoded by the human ether-a-go-go related gene (hERG)
(Fig. 13.1a) [1].

The hERG K+ channel plays a crucial role in normal action potential repolari-
zation in the heart. Within recent years, several non-cardiac drugs have been
found to inhibit the hERG K+ channel, resulting in a drug-induced long QT
syndrome and sudden cardiac death. Also terfenadine (Fig. 13.1 b), a drug re-
leased for the treatment of seasonal rhinitis, was found to inhibit the hERG
channel with an IC50 of 56 nM [2]. It caused significant QT prolongation and
had to be withdrawn from the market. Interestingly, fexofenadine, a close ana-
log of terfenadine, does not inhibit the hERG channel and is free of any cardi-
ac-related side-effects (Fig. 13.1c) [2]. Nowadays, pharmacophore [3], structure-
based [4–6], 3D QSAR [3] and neural network models [7] have been developed
for the hERG channel to support the chemical optimization of novel drug candi-
dates towards molecules having no hERG-mediated cardiac side-effects.

Historically, the discovery of drugs acting at G-protein coupled receptors
(GPCRs) has been extremely successful with 50% of all recently launched drugs
targeting against GPCRs [8]. GPCRs form a large protein family that plays an
important role in many physiological and patho-physiological processes. Espe-
cially the subfamily of biogenic amine-binding GPCRs has provided excellent
drug targets (given in parentheses) for the treatment of numerous diseases (Ta-
ble 13.1): schizophrenia (mixed D2/D1/5-HT2 antagonists), psychosis (mixed
D2/5-HT2A antagonists), depression (5-HT1 agonists), migraine (5-HT1 ago-
nists), allergies (H1 antagonists), asthma (�2 agonists, M1 antagonists), ulcers
(H2 antagonist) or hypertension (�1 antagonist, �1 antagonist). Although repre-
senting excellent therapeutic targets, the central role that many of the biogenic
amine-binding GPCRs play in cell signaling also poses a risk for new drug can-
didates which reveal side-affinities towards these receptor sites: These candi-
dates have the potential to interfere with the physiological signaling process and
to cause undesired effects in preclinical or clinical studies. For example, the �1A

adrenergic receptor modulates the relaxation of the vascular muscle tone and is
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Table 13.1 Biogenic amine binding GPCR anti-targets and
side-effects mediated by high-affinity antagonists of the
respective receptor

Receptor Expected side-effects

Adrenergic �1a Orthostatic hypotension, dizziness and fainting spells
Dopaminergic D2 Extrapyramidal syndrome (EPS), tardive dyskinesia
Serotonin 5-HT2C Weight gain, obesity
Muscarinic M1 Attention deficits, hallucinations, memory deficits



therefore important for blood pressure regulation. It has been suggested as an
anti-target that mediates cardiovascular side-effects of many drug candidates
causing orthostatic hypotension, dizziness and fainting spells [9, 10]. Further-
more, in order to obtain a clean clinical profile for novel development candi-
dates, strong molecular interactions with dopamine and serotonin receptors
(such as 5-HT2A and D2 receptors) representing the molecular targets for many
anti-psychotics (e.g. olanzapine and risperidone) need to be avoided. Table 13.1
lists some GPCR anti-targets and the potential side-effects mediated by high-af-
finity antagonists of these receptors.

13.2
In Silico Tools for GPCR Anti-target Modeling

In order to monitor affinity profiles of new drug candidates and to predict unde-
sired GPCR-mediated side-effects, we have established a panel of biogenic
amine receptor binding assays. Profiling of several hundred compounds within
this panel showed that several lead compounds entering the chemical optimiza-
tion phase reveal affinities towards several members of the biogenic amine anti-
target panel. Reliable in silico tools to identify compounds with strong GPCR
anti-target affinity and computational models to guide the chemical optimization
towards compounds having a more favorable GPCR affinity profile thus appear
to be of great value for the design and development of new drug candidates.

The challenge in the generation of these pharmacophores for anti-target mod-
eling is the requirement that these models need to describe the receptor interac-
tion points not only for a single chemical series but for several different com-
pound classes. In addition, these cross-chemotype pharmacophores need to cap-
ture sufficient pharmacophoric points to describe all relevant receptor–ligand in-
teractions. Three-dimensional pharmacophore models rationalizing the affinity
of several different chemical series have recently been described for the �1A, the
5-HT2A and the D2 receptors [11]. This chapter is focused on the anti-target
pharmacophore models of the �1A adrenergic receptor, the prototype of a GPCR
anti-target. Using the �1A receptor as an example, the generation of validation of
cross-chemotype pharmacophore models and first applications of these anti-target
models will be described. It will be shown how these anti-target pharmacophore
models are capable of rationalizing the strong anti-target affinity of novel lead
series and how they can guide the chemical optimization towards development
candidates with a superior safety index.

13.3
GPCR Anti-target Pharmacophore Modeling: the �1a Adrenergic Receptor

Pharmacophore models for the �1A adrenergic receptor have also been described
by others [12, 13]. Barbaro et al. used a series of pyridazinone derivatives based
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on biological data on the rat receptor as a training set for pharmacophore gen-
eration [12]. The model appears to be well suited for the quantitative prediction
of the biological activity of the training set molecules and chemically closely re-
lated series (Fig. 13.2a). However, it does not represent a cross-chemotype model
suitable for mapping a diverse set of different �1A chemical series. The model
generated by Bremner and co-workers, on the other hand, was derived from a
diverse set of 38 compounds [13, 14]. However, it comprises only three pharma-
cophoric features and is therefore quite generic and cannot be expected to be
very specific for the �1A receptor (Fig. 13.2 b). As both available models appeared
to be unsuitable for the purpose of anti-target modeling, cross-chemotype pharma-
cophore models for the human �1A adrenergic receptor have been generated
[11].

13.3.1
Generation of Cross-chemotype Pharmacophore Models

The common-features hypothesis generation module of Catalyst 4.7 [15] (termed
HipHop) was used for the generation of two cross-chemotype 3D pharmacophores
describing �1A antagonists. The common-features hypothesis generation module
is designed specifically for finding chemical features shared by a set of com-
pounds belonging to different chemical classes. It provides the compounds’ rela-
tive alignments with the hypothesis expressing these common features. The
training set used for the generation of the �1a adrenergic pharmacophore model
was extracted from the Aureus database, a structure–activity database for GPCR
ligands compiled and maintained by Aureus Pharma [16]. The database covers
all biological data published on GPCRs and provides chemical structural infor-
mation, references to the original publication or patent and detailed information
on the experimental conditions (e.g. assay type, cell line or radioligand used).
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Fig. 13.2 �1A adrenergic receptor pharmaco-
phore models. (a) By Barbaro et al. using a
series of pyridazinone derivatives and biolog-
ical data from rat receptor [12]. Reprinted
with permission from [12]. Copyright 2001,

American Chemical Society. (B) By Bremner
et al. derived from a diverse set of 38 com-
pounds [13, 14]. Reprinted from [14]. Copy-
right 2000, with permission from Elsevier.



Adrenergic �1A receptor antagonists with Ki values < 100 nM tested against the
recombinant human wild-type receptor were extracted from the Aureus data-
base. The structural analysis of the compounds reveals that they can be grouped
into two classes, probably binding overlapping but not identical binding sites
within the receptor. Thus two diverse training sets covering chemotype exam-
ples of both classes were selected: (i) class II antagonists are represented by six
compounds revealing two aromatic rings and a positively ionizable group posi-
tioned two to four bond lengths from the aromatic features; and (ii) 14 repre-
sentatives of class I antagonists, revealing a positively ionizable group which is
separated from the first aromatic ring by two to three bond lengths and by six
to seven bond lengths to the second aromatic ring. Table 13.2 and Scheme 13.1
show the chemical structures of both sets of compounds used for pharmaco-
phore generation together with the reported binding affinities.

13.3.2
Description of Cross-chemotype Pharmacophore Models

The two common-feature pharmacophores are depicted in Fig. 13.3a and b
showing the mapping on to a reference molecule representative for both classes
of high affinity �1A antagonists [11]. The models describe the key chemical fea-
tures required for binding of structurally diverse ligands to this adrenergic re-
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Table 13.2 Training set molecules for �1A adrenergic receptor and
their affinities measured in a radioligand displacement assay

Class Compound Ki (nM) [11]

I 1 0.2
I 2 0.2
I Prazosin 0.3
I NAN 190 0.4
I RS 17053 0.5
I 3 0.5
I Doxazosin 0.8
I 4 1.0
I 5 2.8
I 6 4.6
I Cyclazosin 12.3
I 7 27.1
I 8 44
I 9 72.4
II YM 617 0.04
II WB 4104 0.1
II ARC 239 0.4
II BE 2254 0.4
II Spiperone 25.1
II 10 28.2
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Scheme 13.1a

Scheme 13.1b



ceptor subtype: The class I pharmacophore (Fig. 13.3 a) represents a five-point
pharmacophore, which is composed of three hydrophobic moieties connected
through a positively ionizable group (matched by the N2 group of the quinazo-
line ring) and a hydrogen-bond acceptor group (mapped by the amide group of
the shown compound prazosin). The class II pharmacophore (Fig. 13.3b) de-
scribes the four main pharmacophoric points of the smaller class of �1A ligands
lacking the hydrogen-bond acceptor group: two ring aromatic features, one hy-
drophobic and one positively ionizable feature.

The similarity of the right part of both pharmacophores (class I, positively io-
nizable, hydrophobic, hydrophobic; class II, positively ionizable, hydrophobic,
ring aromatic) indicates that the “head” groups of class I and class II ligands
mapping this part of the pharmacophore interact with the same site at the adre-
nergic receptor (see Section 13.3.4). However, both pharmacophores also reflect
the differences between the two different classes of �1A receptor antagonists
found in the left part of the molecules as shown in Scheme 13.1. Class I li-
gands appear to share an acceptor group and a second hydrophobic group sepa-
rated from the central positive charge by 9.5 Å (5–6 bond lengths). The shorter
class II ligands, however, reveal an aromatic group connected by only 7.2 Å (2–4
bond lengths) to the positively charged nitrogen atom.

13.3.3
Validation of Anti-target Pharmacophore Models

13.3.3.1 Virtual Screening: Hit Rates and Yields
The purpose of the anti-target pharmacophores is to recognize and rationalize
anti-target side-affinities within chemotypes different from those used in the
training set. Hence it appears crucial to validate the pharmacophore hypotheses
using external test set molecules, which have not been used for pharmacophore

13.3 GPCR Anti-target Pharmacophore Modeling: the �1a Adrenergic Receptor 289

Fig. 13.3 Common-feature pharmacophores
of �1a adrenergic receptor antagonists [11].
On to each pharmacophore the reference
has been mapped. (a) Class I pharmaco-
phore model aligned to prazosin; (b) class II
pharmacophore model aligned to compound

10. Pharmacophoric features are red for
positively ionizable (PI), green for hydrogen
bond acceptors (HBA), light blue for hydro-
phobic (HY) and orange for ring aromatic
(RA). Shape restraints are shown in light
blue.



model generation. The predictive power of both �1A pharmacophore models was
therefore evaluated by virtual screening using a test database of 50 known �1A

antagonists embedded in a database consisting of 1000 drug-like molecules (ac-
tive and inactive sets were taken from the MDL MDDR database) [11]. To mark
the predictive power hit rates [hit rate = (number of �1A antagonists in hit list)/
(total number of compounds in hit list)�100] and yields [yield = (number of �1A

antagonists in hit list)/(number of �1A antagonists in full database)�100] were
calculated. The results are presented in Table 13.3. For both pharmacophores a
hit rate of approximately 30% was obtained, which is six times higher than a
random selection. In addition, with a yield of 84%, the class II pharmacophore
was able to identify most of the �1A antagonists within the test set, still reveal-
ing excellent specificity as reflected by a good hit rate.

The virtual screening suggests that especially the less stringent class II four-
point pharmacophore is suitable to recognize most of the known �1A antago-
nists and to provide mappings of compounds having significant �1A affinity.
Taken together, both pharmacophores are able to recognize 90% of the �1A an-
tagonists embedded in the test data set.

13.3.3.2 Virtual Screening: Fit Values and Enrichment Factors
In many cases, the performance of a pharmacophore-based virtual screen can
be improved when the quality of the mapping to the respective pharmacophore
is considered. Fit values of all test set molecules on to both pharmacophores
can be calculated and the compounds can be sorted using the fit value of their
mappings. The resulting enrichment graphs are shown Fig. 13.4 for both �1A

pharmacophores.
Both enrichment curves show a steep beginning, almost parallel to the ideal

curve (black line). The flattening of the curves towards the right can be ex-
plained by the fact that some �1A compounds of the MDDR database cannot be
mapped by the pharmacophore and thus obtain fit values of 0. The steepness of
the enrichment curve on the left, however, reflects, that among the top-ranked
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Table 13.3 Hit rates and yields from virtual screen of MDDR
test set database using both �1A pharmacophores as selection
filter [11]

Class No. of virtual hits No. of identified
�1A antagonists

Hit rate (%) a) Yield (%) b)

I 82 26 32 52
II 146 42 29 84
I or II 168 45 27 90

a) Hit rate = (number of true actives in hit list)/(number of
compounds in hit list)�100.

b) Yield = (number of true actives in hit list)/(number of true
actives in full database)�100.



compounds of the database (e.g. 1–10%), a high percentage of true �1A ligands
can be identified by these anti-target pharmacophores (e.g. among top 10 scored
virtual hits using class II pharmacophore six are �1A antagonists, indicating a
hit rate of 60% among the top 1% of the virtual hits). Hit values, yields and en-
richment factors (hit rate found versus random selection) are listed for both
pharmacophores for the top 5% scorers in Table 13.4: (i) both pharmacophores
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Fig. 13.4 Enrichment graph for virtual
screening of �1A antagonists embedded into
a random MDDR library comprising 1048
compounds [11]. The curve shows the rela-
tive ranking of the 50 �1A antagonists. Data-
base compounds are ranked along the x-axis
based on the fit value calculated for the
mapping on the respective pharmacophore.

Cyan, class I pharmacophore; magenta, class
II pharmacophore; blue, sum of class I and
class II; green, maximum Tanimoto similarity
to reference compounds in training set; red,
random; black, ideal. The enrichment by the
class II pharmacophore (magenta) at a yield
of 50% is 10-fold better than by a random
selection.

Table 13.4 Hit rates, yields and enrichment factors for the top
5% scorers from virtual screen of MDDR test set database
using both �1A pharmacophores as selection filters. All com-
pounds were scored based on their fit value on to the respec-
tive pharmacophore

No. of �1A antagonists
among top 5% of database

Hit rate (%) a) Yield (%) b) Enrichment factor

I 22 42 44 8.8
II 25 48 50 10

a) Hit rate = (number of true actives in hit list)/(number of
compounds in hit list)�100.

b) Yield = (number of true actives in hit list)/(number of true
actives in full database)�100.



provide an excellent yield with 44 and 50% of the �1A antagonists being found
among the top 5% scorers of the ranked database, respectively; (ii) enrichment
factors between 9 and 10 were obtained comparing the hit rate of the pharmaco-
phore-based selection with a random selection. The excellent hit rate and yield
generated cannot be explained by the structural similarity of MDDR test set
molecules to the Aureus training set molecules. Figure 13.4 reveals that the
yields and hit rates obtained by ranking the database compounds based on their
maximal Tanimoto similarity (calculated based on 2D fingerprints: green curve)
to one of the six Aureus class II training set molecules is not significantly high-
er than a random selection.

The excellent performance in terms of yield and enrichment factor of both
pharmacophores suggests that both pharmacophores can also be useful filters
for virtual screening to identify �1A antagonists within large compound reposi-
tories. Indeed, both pharmacophores have been successfully applied in a virtual
screening approach combining pharmacophore-based and homology model-
based virtual screening [17]. Using this combined approach, novel �1A antago-
nists exhibiting nanomolar affinity could be identified from the corporate com-
pound collection.

13.3.4
Mapping of Pharmacophore Models into Receptor Site

Numerous site-directed mutagenesis studies have provided a conclusive picture
for the molecular interactions between receptor-activating biogenic amines (e.g.
serotonin, epinephrine, dopamine) and their receptors [18–22]: a highly con-
served aspartate residue in transmembrane helix TM3 (Asp 3.32 according to
the Ballosteros-Weinstein nomenclature) [23] conserved serine residues in TM5
(e.g. Ser 5.42 and Ser 5.46 for �1A) and also hydrophobic phenylalanine residues
from TM6 have been identified as being important for agonist binding. In addi-
tion, through mutational studies and comparative affinity determinations based
on ligand binding, the essential amino acids involved in antagonist recognition
could be identified for the �1A receptor [22, 24, 25]. According to these studies,
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Figure 13.5 Topographical interaction model
of �1A adrenergic receptor generated based
on public site-directed mutagenesis. Both
pharmacophore models have been mapped
into the topographical model of the receptor.
The model reveals putative receptor interac-
tion sites for most of the pharmacophoric
features observed within each antagonist
class. (a) Class I pharmacophore with prazo-
sin as reference compound; (b) class II phar-
macophore with compound 10 as reference.
Pharmacophoric features are red for posi-

tively ionizable (PI), green for hydrogen-bond
acceptors (HBA), light blue for hydrophobic
(HY) and orange for ring aromatic (RA).
Shape restraints are shown in light blue.
Arrows indicate putative molecular interac-
tions between the pharmacophoric points
and receptor sites. Color codes indicate the
type of molecular interaction: light blue,
hydrophobic; red, salt bridge to negative
ionizable group from receptor; orange,
aromatic stacking interaction.

�
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the binding pocket of the prototype biogenic amine receptor antagonist
stretches from the agonist binding site formed by TM3, TM5 and TM6 – inter-
acting with the antagonist’s “head” group – towards the transmembrane helices
TM1, TM2 and TM7, which have been suggested to harbor the lipophilic “tail”
moiety of several antagonists. Based on these experimental data, a topographical
interaction model for the �1A receptor has been generated as shown in Fig. 13.5
[11].

The two pharmacophore models were mapped into the topographical interac-
tion model to indicate the putative interaction points of each pharmacophoric
feature with its receptor: (i) the positive ionizable pharmacophoric feature is
thought to be anchored via a salt bridge to the conserved aspartate residue in
TM3; (ii) the hydrophobic and aromatic features of the “head” moieties are har-
bored within hydrophobic micro domains formed by aromatic and aliphatic
side-chains of TM4, TM5 and TM6; the “floor” of this hydrophobic micro do-
main is formed by several conserved aromatic amino acids (Phe 6.44, Trp 6.48,
Phe 5.47), which are conserved among the family of biogenic amine GPCRs;
and (iii) the hydrophobic or ring aromatic feature observed within the “tail”
moiety of almost all �1A antagonists is likely to be directed towards aromatic
and hydrophobic residues within TM helices TM3 (Trp 3.28) and TM2 (Phe
2.64).

13.3.5
Guidance of Chemical Optimization to Avoid GPCR-mediated Side-effects

Our company has established a panel of biogenic amine receptor binding assays
to monitor affinity profiles of novel drug candidates. So far, several hundred
compounds coming from GPCR directed libraries have been profiled against
this panel, revealing that approximately 14% of the profiled compounds have
moderate �1A affinity in the submicromolar range and 3.5% of all tested com-
pounds reveal strong �1A binding with affinities < 100 nM. These experimental
results show once more the need to optimize the side-affinity profile of several
compounds to support the further development of these drug candidates.

The main application of the generated anti-target pharmacophore hypotheses
is to rationalize these experimental findings by providing pharmacophore map-
pings. Recognition of the key chemical features that are responsible for the
side-affinities of a chemical series could then provide guidance for the chemical
optimization of the series towards compounds having a more favorable side-af-
finity profile. Most importantly, 80% of all experimentally identified �1A binders
could be mapped on to the class II �1A pharmacophore fulfilling all four phar-
macophore points. Mapping of one of these compounds on to the �1A class II
pharmacophore is shown in Fig. 13.6. The mapping directly suggests the chemi-
cal features that are mediating the strong affinity towards this subtype of the
adrenergic receptor: these are the positive charge of the piperazine moiety, the
ortho-substituted phenyl ring at the 4-position of the piperazine and the aro-
matic ring of the phenoxy side-chain. The mapping thus provides direct guid-
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ance for the chemical optimization of the respective series to avoid the unde-
sired �1A affinity (e.g. removal of the chlorine substituent within the 4-phenyl
piperazine compound series).

13.4
Conclusion

As demonstrated in this chapter, cross-chemotype pharmacophore models can be
generated from training sets covering chemically diverse ligands. These models
describe the key pharmacophoric features required for receptor binding. When
site-directed mutagenesis data are available, the models can be mapped into the
receptor recognition site linking each pharmacophoric point to its interaction
site within the receptor. When applied as filters within virtual screening, these
3D pharmacophores offer acceptable levels of predictivity as revealed by good
yields and high enrichment factors. Furthermore, such in silico tools can be di-
rectly applied to guide the chemical optimization of novel GPCR drug candi-
dates towards clinical candidates with less �1A-mediated side-effects (e.g. ortho-
static hypotension, dizziness and fainting spells).
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Figure 13.6 Pharmacophore mapping of high-affinity �1A binder
mapped on to class II adrenergic �1A pharmacophore model.
All pharmacophoric points are mapped. The alignment suggests
that removal of the chlorine substituent within the 4-phenyl-
piperidine will reduce the unfavorable site affinity on �1A.
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Cheng Chang and Sean Ekins

14.1
Introduction

The last decade has witnessed an enormous increase in the number of com-
pounds flowing through the drug discovery and development pipeline in the
pharmaceutical industry, primarily owing to the advent of combinatorial chemis-
try and high-throughput screening (HTS) (Rodrigues 1997). These new technol-
ogies may have increased the chances of finding new lead compounds beyond
traditional medicinal chemistry methods. However, expensive phase II and
phase III clinical trial failures related to unsatisfactory ADME/Tox properties
have also increased. In order to improve the rate of success in the more costly
downstream stages of drug development, ADME/Tox evaluations have been
shifted into the very early part of the discovery process. New technologies such
as in vitro HTS and in silico approaches have been developed to meet the new
challenges of large compound numbers and shortened cycle times that are char-
acteristic of this phase of drug discovery. As the most cost-effective method, in
silico screening has the additional advantage of being able to reduce significantly
the experimental effort in the screening phase of drug discovery (Boobis et al.
2002). In silico approaches include three-dimensional quantitative structure–ac-
tivity relationship (3D-QSAR) and pharmacophore modeling, which can be used
directly as database searching methods. Recently, there have been several re-
views focused on different aspects of computational ADME/Tox and more re-
cently one of these (Ekins and Swaan 2004) has reviewed in silico approaches to
modeling the specific proteins involved in determining ADME/Tox properties.
The primary aim of this chapter is to review briefly some of the recent applica-
tions of pharmacophore technologies in drug discovery ADME/Tox studies. For
other QSAR methods the reader is referred to several useful recent reviews (Bar-
ratt and Rodford 2001; Wessel and Mente 2001; Butina et al. 2002; Greene
2002; van de Waterbeemd and Gifford 2003).

Absorption into the bloodstream is the first step for drugs to reach their tar-
gets followed by distribution to tissues. The drugs are then metabolized into
more readily excreted forms. All of these aspects are significantly mediated or
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influenced by transporters, enzymes, ion channels and receptors. This complex
interplay of different proteins coordinates to absorb nutrients and protect
against the accumulation and toxic compounds. The potential overlap or compe-
tition of multiple compounds with affinity for the same protein raises the po-
tential for possible drug–drug interactions (DDI), which could result in either
reduced drug efficiency or increased drug toxicity owing to extended bioavail-
ability. Methods to predict these types of interactions effectively are highly desir-
able and in recent years we have seen the focus of much research on computa-
tional methods. The interest in computational models based on in vitro data for
predicting potential drug interactions via these multiple proteins (Ekins and
Swaan 2004) follows the computational assessment of properties such as ab-
sorption (Palm et al. 1996, 1998; Wessel et al. 1998; Clark 1999; Kelder et al.
1999; Norinder et al. 1999; Oprea and Gottfries 1999; Stenberg et al. 1999; Egan
et al. 2000; Ekins et al. 2001b; Raevsky et al. 2001; Stenberg et al. 2001; Zhao et
al. 2001; Niwa 2003), which now occurs much earlier in drug discovery than
perhaps a decade ago or less (Ekins et al. 2000 c; Ekins and Rose 2002). These
recently developed different computational approaches are undergoing valida-
tion yet they represent a means to improve the productivity of the drug discov-
ery process. Owing to their highly parallel nature, computational methods are
also the fastest and most cost-effective method for indication of possible toxic
consequences caused by interfering with the above multiple proteins (Ekins et
al. 2000 b), providing molecular insight and suggesting new hypotheses for rap-
id testing in vitro. This ability to screen large numbers of molecules computa-
tionally parallels the increase in throughput of in vitro assays for drug discovery
over the past decade. Both in vitro and computational approaches can be used
in tandem in an iterative manner to improve the developed models.

A pharmacophore is the representation of the spatial arrangement of structur-
al features that are required for a certain biological activity. Pharmacophore de-
velopment theory and applications have been explained in detail elsewhere (Gu-
ner 2000; Kurogi and Guner 2001; Guner 2002; Guner et al. 2004). Three widely
used pharmacophore perception programs, Catalyst, GASP and DISCO, have
been thoroughly described and compared by Patel et al. (2002) and the inter-
ested reader is referred to their paper for further details of the methods. The ul-
timate goal of in silico studies in ADME/Tox is to predict the disposition behav-
ior of drugs in the whole body by incorporating all kinetic processes into one
global model. However, currently only a very limited number of preliminary
models at the protein level have been conducted (Yamashita and Hashida 2004).
We are starting to observe a more “systems-based” approach to ADME/Tox as
various databases on the interactions of small molecules with proteins are com-
bined with multiple QSAR models and other ADME/Tox tools (Ekins et al.
2005a, c,d). However, most published studies describe modeling of the individu-
al protein targets related to a single ADME/Tox property, and these models will
be the primary focus of this chapter.

The key proteins that have been modeled with such pharmacophore methods
include the major cytochrome P450 (CYP) enzymes, UDP-glucuronosyltransfer-
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ase (UGT), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), pep-
tide transporter (PepT1), apical sodium-dependent bile acid transporter (ASBT),
sodium taurocholate-transporting polypeptide (NTCP), nucleoside transporter,
organic cation transporter (OCT), multiple nuclear hormone receptors including
the pregnane X receptor (PXR) and human ether-a-go-go (hERG) potassium
channel. We describe below some of the pharmacophore modeling efforts to
date in more detail.

14.2
Cytochrome P450

Drug metabolism via the liver is the primary elimination mechanism for the
majority of drugs and xenobiotics in humans. Cytochrome P450s are the most
important enzymes (phase I) whereas UDP-glucuronosyl transferases are the
key (phase II) enzymes for clearance of drugs by the liver (Williams et al.
2004a). Without a crystal or 3D structure for many of these proteins, the predic-
tion of whether a molecule binds to them rests with our limited knowledge of
the specificity and selectivity of the binding sites derived from in vivo and in vi-
tro data. Various in vitro systems are now widely used to study metabolism (Van-
denBranden et al. 1998; Ekins et al. 1999 e) and characterize the potential for
DDI mediated by P450 enzymes (Ekins et al. 1997, 1998c, 2000c; Ekins and
Wrighton 1999; Margolis et al. 2000; Gao et al. 2002). P450s have affinity for
structurally diverse hydrophobic molecules in human and others species used
as pharmacological (Mankowski et al. 2000) or toxicological models (Mankowski
et al. 1999) and represent the most extensively studied family of drug-metaboliz-
ing enzymes. As early as the 1960s, mathematical quantitative structure–activity
relationship (QSAR) models were used to assist the understanding of drug me-
tabolism and to improve the design of new drugs (Hansch et al. 1968). In the
1990s the availability of more complex and graphically intensive software tools
enabled computational pharmacophore-type models describing key molecular
features of ligands for human CYP1A2 (Fuhr et al. 1993) and CYP2C9 (Jones et
al. 1996). In this software, the key molecular features are translated into
spheres, points or a mesh on to which molecules themselves can be mapped in
3D space.

Recent research has described and compared many pharmacophores that have
been generated for P450s (Ekins et al. 2001a; de Groot and Ekins 2002), includ-
ing pharmacophores derived from manual alignments of molecules (de Groot et
al. 1999a, b), providing insight into the important features for interaction of li-
gands and the proteins. The in vitro data training sets have varied in size,
although pharmacophores generally consist of less than 50 molecules and the
size of the corresponding test sets has also varied accordingly. The human
P450s which have received most of the focus of computational approaches to
date include CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5 and CYP3A7 (Ekins
et al. 1997, 1998c, 1999 a–d, 2000a, 2003 b; Ekins and Wrighton 2001; Snyder et
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al. 2002). Models have also been built after analysis of the literature and using
novel data including recombinant-derived kinetic values for CYP2B6 (Ekins et
al. 1999c; Wang and Halpert 2002), CYP2C9 (Jones et al. 1996; Afzelius et al.
2001) and CYP2D6 (Snyder et al. 2002), although these efforts have ventured
beyond strictly using pharmacophores in some cases. In particular, the charac-
terization of CYP2B6 with in vitro methods resulted in the first pharmacophore
and 3D-QSAR models published for substrates of this enzyme, suggesting at
least three hydrophobic interactions and a hydrogen-bond acceptor are impor-
tant features for binding (Ekins et al. 1999c). The combined in vitro and compu-
tational approaches for CYP2B6 also increased awareness of the potential of this
enzyme to bind similar ligands to CYP3A4. Complex in vitro enzyme kinetics
were also first reported for CYP2B6 in these studies, which are indicative of
multiple molecules binding simultaneously to the enzyme (Ekins et al. 1997,
1998b, c, 1999c; Ekins and Wrighton 1999), a characteristic at that time pre-
viously only widely observed with CYP3A4. The CYP3A family of enzymes are
the most important in terms of human drug metabolism (Wrighton et al. 2000)
because they have a broad substrate specificity. Computational pharmacophores
for CYP3A4 have therefore been derived for substrates (Ekins et al. 1999d) and
inhibitors (Ekins et al. 1999 b, 2003a, b) using kinetic constants Km, Ki (apparent)

and IC50 data (Ekins et al. 2001a).
The computational pharmacophore approach has also been used to provide

the first example of a model for the important features of molecules which in-
crease their own metabolism (autoactivators) via CYP3A4. This autoactivator
pharmacophore for CYP3A4 possessed three hydrophobic features and one hy-
drogen-bond acceptor (Ekins et al. 1999d), corresponding with residues identi-
fied using site-directed mutagenesis studies (Harlow and Halpert 1997; He et
al. 1997; Domanski et al. 1998, 2000; Xue et al. 2001). This autoactivator model
provided some ideas of the mechanism behind the unusual kinetic behavior of
this enzyme by possibly binding a different site in the protein (Ekins et al.
1998a). Recently, heteroactivation pharmacophores have been generated for
CYP3A4 and CYP2C9 (Egnell et al. 2003, 2004) where in these cases a molecule
acts to increase the metabolism of a second different molecule.

The structures of the membrane bound CYPs were unknown until the rela-
tively recent crystallization of the rabbit and human CYP2C forms (Cosme and
Johnson 2000; Williams et al. 2000, 2003) and the human CYP3A4 (Williams et
al. 2004b; Yano et al. 2004). The X-ray structures for CYP2C9 and CYP3A4 have
to some extent confirmed some of the complex binding characteristics of CYPs
seen in vitro with CYP3A4 and CYP2B6, which were extensively modeled com-
putationally using pharmacophores. The continued generation of in vitro data-
sets using recombinant CYPs presents the opportunity for further pharmaco-
phore modeling studies to understand binding site features. A recent study
used a series of quinidine and quinine analogs as inhibitors of human CYP2D6
(Hutzler et al. 2003) to assess whether the ionic interaction of the basic nitrogen
represented the most important feature for binding. We have used these data
for 27 molecules with an IC50 range 0.01–64.1 �M to build a Catalyst pharmaco-
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phore for this structurally similar series. Four pharmacophore features are de-
rived from the quinidine backbone (three hydrophobes and one hydrogen-bond
acceptor) and only one feature, a hydrogen-bond acceptor, reflects the R group
modifications (Fig. 14.1 a). Interestingly no feature is mapped to the substitu-
ents on the tertiary quinuclidine nitrogen atom (Fig. 14.1A).

The model statistics (r= 0.90; total cost= 124.8 was considerably lower than
the null hypothesis total cost= 170.3) indicate that this may be a useful model
for understanding the orientation and mapping of the various analogs. Other
known substrates and inhibitors of this enzyme were fitted to the model includ-
ing debrisoquine (Fig. 14.1 b) and S-fluoxetine (Fig. 14.1 c), demonstrating in
both cases the mapping to some, but not all, features. There was similarity in
this pharmacophore to those derived previously for CYP2D6 inhibitors as the
hydrophobic features were dominant, (Ekins et al. 1999a), although this pre-
vious study contained a hydrogen-bond acceptor and hydrogen-bond donor in
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Fig. 14.1 A CYP2D6 inhibitor HypoGen phar-
macophore model derived from quinidine
and quinine analogs (Hutzler et al., 2003)
showing (a) the mapping of a training set
compound, (b) the substrate debrisoquine

(Lightfoot et al., 2000) and (c) the substrate
(Margolis et al., 2000) and inhibitor (Ekins
et al., 1999a) S-fluoxetine. The pharmaco-
phore includes hydrogen-bond acceptors
(green) and hydrophobes (cyan).



both pharmacophores presented. A CYP2D6 substrate Catalyst pharmacophore
contained a positive ionizable feature, hydrogen-bond acceptor and two hydro-
phobic features (Snyder et al. 2002). These published pharmacophores may all
have some general degree of overlap but they identify different interactions in
the binding site that can be influenced and are probably dependent on the exis-
tence of a basic nitrogen in the molecule.

14.3
UDP-glucuronosyltransferase

Phase II metabolic processes including the glucuronidation of small lipophilic
molecules are important for the clearance of drugs, endobiotics and xenobiotics
in all mammalian species (Tukey and Strassburg 2000). A recent study de-
scribed the glucuronidation of simple 4-substituted phenols by the human re-
combinant UGT1A6 and UGT1A9 isoenzymes (Ethell et al. 2002). A genetic al-
gorithm using a range of molecular surface and atomic descriptors was used in
one of the first attempts to predict the Km for these isoenzymes, Pharmaco-
phore development in this case was not successful. A different group has used
Catalyst pharmacophores for many of these enzymes employing either HipHop
or HypoGen with a custom glucuronidation feature. In this way it was possible
to derive pharmacophores for UDPGT 1A4 (Smith et al. 2003b), UDPGT 1A1
(Sorich et al. 2002; Smith et al. 2003 a) and others (Sorich et al. 2004). At pres-
ent, the datasets from which the models were constructed are still relatively lim-
ited in terms of structural diversity compared with the P450 models, therefore
the general applicability of these pharmacophore models may be restricted until
more in vitro data are available.

14.4
P-glycoprotein (P-gp)

The efflux transporter P-gp is a large ATP-dependent membrane-bound protein
expressed at the plasma membrane interface of many organs with their environ-
ment. This transporter acts as a barrier, limiting exposure to a diverse range of
structurally and functionally unrelated substrates such as paclitaxel. Overexpres-
sion of P-gp in malignant cells has also been associated with multidrug resis-
tance (MDR) in some cancers by transporting anticancer drugs such as gleevec
out of these cells (Wandell et al. 1999; Ekins and Swaan 2004). P-gp is mainly
expressed in the canalicular domain of hepatocytes, brush border of proximal
tubule cells and capillary endothelial cells in the central nervous system (CNS).
These locations for the transporter expression result in reduced oral drug ab-
sorption and enhanced renal and biliary excretion of substrate drugs. Being an
obvious target for improved bioavailability of drugs, P-gp has been intensively
studied, with many experimental results available in the literature. To account
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for the observed broad substrate specificities for P-gp, the presence of multiple
drug binding sites has also been proposed by many groups (Ayesh et al. 1996;
Dey et al. 1997; Scala et al. 1997; Shapiro and Ling 1997; Shapiro et al. 1999).

Computational pharmacophores have been generated to predict the inhibition
of P-gp from in vitro data for several cell systems, including structurally diverse
inhibitors of digoxin transport in Caco-2 cells, vinblastine and calcein accumula-
tion in P-gp expressing LLC-PK1 (L-MDR1) cells and vinblastine binding in ves-
icles derived from CEM/VLB100 cells (Ekins et al. 2002c,d). A pharmacophore
constructed with 27 inhibitors of digoxin transport by P-gp appears to be one of
the most useful models described by the authors and was predictive for mole-
cules known to inhibit digoxin transport and vinblastine binding (Ekins et al.
2002d). Most of these P-gp pharmacophore models correctly rank-order the data
from the other probes, indicating partial overlap for the binding sites probed by
digoxin and vinblastine. By merging all P-gp inhibitor pharmacophores, com-
mon areas of identical chemical features such as hydrophobes, hydrogen-bond
acceptors and ring aromatic features were apparent (Ekins et al. 2002c). A com-
mon features HipHop alignment of the P-gp substrates verapamil and digoxin
produced a pharmacophore to which vinblastine partially aligned and that also
indicated affinity for a similar or identical binding site(s) within P-gp, overlap-
ping with the P-gp inhibitor pharmacophores (Ekins et al. 2002c).

Further pharmacophore-based approaches (Pajeva and Wiese 2002) using
GASP alignments to vinblastine and to Rhodamine 123 have been carried out
to elucidate the verapamil binding site (Pajeva and Wiese 2002). Those studies
revealed similar pharmacophore requirements as proposed above. Multiple hy-
drophobic and hydrogen-bonding interactions were described (Pajeva and Wiese
2002). Superimposition of a small number of P-gp ligands with SYBYL and
MOLCAD was undertaken by Garrigues et al. (2002) to generate two pharmaco-
phores. The resulting models were validated with two additional compounds.
Based on the transport profile of nine glucocorticoid compounds, further P-gp
pharmacophore and QSAR models were generated (Yates et al. 2003). This mod-
el is very similar to the P-gp inhibition model based on vinblastine, both having
four hydrophobes and two hydrogen-bond acceptors. This P-gp transport model
also has two hydrogen-bond donor site features, which could be useful in sug-
gesting interacting amino acids within P-gp. When comparing the P-gp trans-
port model with the previous inhibition model based on digoxin, some interest-
ing observations can be made. Both models comprise hydrophobic and hydro-
gen-bond acceptor features. Owing to the similarity of glucocorticoid training
set compounds, four hydrophobic features representing the steroid ring system
were all identified in the transport pharmacophore model. These molecules are
a very homologous set of compounds, which is in contrast to the molecules in
the inhibition model and this may be illustrated by the multiple hydrogen-bond
acceptor features in the transport model whereas the inhibition model has only
one. Satisfying the transport model would render a compound susceptible to P-
gp, but not fitting in the model does not necessarily exclude the candidate from
P-gp transport. It is therefore necessary to filter through different pharmaco-
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phore models for P-gp substrate and inhibitor screening to have a more com-
prehensive assessment of the candidate molecules in question. A recent phar-
macophore based search of the Derwent World Drug Index identified 28 P-gp
inhibitors of diverse structures (Langer et al. 2004). Our own searches of data-
bases of known P-gp substrates and non-substrates with the previously pub-
lished catalyst inhibitor pharmacophores suggest that they may also be useful
for identifying drugs in larger databases that had not previously been identified
as P-gp substrates or inhibitors (Chang et al. 2005a). Molecular modeling stud-
ies therefore have the potential to enhance our understanding of complex trans-
porters such as P-gp for which we currently do not have a crystal structure, and
such studies can also be applied more globally to other transporters, as the fol-
lowing sections demonstrate.

14.5
Human Peptide Transporter 1

In an effort to try to predict ionized molecules that are actively transported from
the intestine into the circulation, a pharmacophore model of the rat peptide
transporter was produced with literature Km data (Ekins et al. 2000 d). This
model suggested that two ionizable groups, a hydrophobe and a hydrogen-bond
acceptor, are important features for the transporter. This preliminary work has
been expanded to identify novel substrates for the human intestinal small pep-
tide carrier (hPEPT1), which is a proton-coupled, low-affinity, high-capacity oli-
gopeptide transport system with broad substrate specificity known to transport a
range of di- and tripeptides, �-lactam antibiotics and angiotensin-converting en-
zyme inhibitors. The well-characterized and relatively high-affinity ligands Gly-
Sar, bestatin and enalapril were used to generate a common features HipHop
pharmacophore. This consisted of two hydrophobic features, a hydrogen-bond
donor and acceptor and a negative ionizable feature (Ekins et al. 2005b), repre-
senting different features and positioning compared with the rat peptide trans-
porter substrate pharmacophore. This hPEPT1 HipHop pharmacophore was
then used to search the CMC database of over 8000 drug-like molecules and re-
trieved 145 virtual hits mapping to the features. The highest scoring com-
pounds within this set were selected and tested in a stably transfected CHO-
hPepT1 cell model. The antidiabetic repaglinide and HMG-CoA reductase inhib-
itor fluvastatin were found to inhibit hPEPT1 with sub-millimolar potency
(Ekins et al. 2005b) (IC50 178± 1.0 and 337± 4 �M, respectively). The pharmaco-
phore was also able to identify known hPEPT1 substrates and inhibitors in a
further database mining exercise using over 500 commonly prescribed drugs.
This further validated the model and demonstrated the potential of combining
computational and in vitro approaches to determine the affinity of compounds
for hPEPT1. These computational and in vitro efforts provide some insights into
key molecular interactions and have indicated that there may be many more
drugs that are substrates for hPEPT1 than previously described.

14 Pharmacophores for Human ADME/Tox-related Proteins306



14.6
Apical Sodium-dependent Bile Acid Transporter (ASBT)

The ASBT is a high-efficacy, high-capacity bile acid transporter located on intest-
inal epithelial cells. It provides an additional intestinal target for improving drug
absorption. In 1970, Lack and colleagues proposed the characteristics of the ASBT
binding site as having a hydrophobic pocket with three components: a recognition
site for interaction with steroid nucleus, an anionic site for electrostatic interaction
with co-transported sodium and a cationic site for interaction with the negatively
charged side-chain (Lack et al. 1970). A Catalyst pharmacophore model developed
later by Baringhaus and colleagues based on a training set of 17 chemically diverse
inhibitors of ASBT gave a more accurate description of the essential features for
ASBT affinity, namely one hydrogen-bond donor represented by the 7- or 12-hydro-
xyl group, one hydrogen-bond acceptor made up by the negatively charged side-
chain and three hydrophobic features partially fulfilled by ring D and the 21-
methyl group (Baringhaus et al. 1999). Since the 3-hydroxyl does not map to
any essential features, the authors suggested substituting 3-hydroxyl groups in
poorly absorbed drugs to increase bioavailability. To date we are not aware of
any additional pharmacophores for ASBT.

14.7
Sodium Taurocholate-transporting Polypeptide (NTCP)

NTCP is responsible for the transport of bile acids into the liver. Similarly to
ASBT in some respects, it is also a potential target for the improvement of ab-
sorption of poorly absorbable drugs. A successful case is the improvement of
antitumor agent cisplatin. Utilizing NTCP, the novel cisplatin–bile acid the deri-
vatives Bamet-UD2 and Bamet-R2 are more efficiently transported into the liver
(Briz et al. 2002) than cisplatin, while toxic accumulation in other tissues is sig-
nificantly lowered. Since the inhibition of NTCP contributes to cholestasis, Kim
et al. (1999) evaluated 33 molecules in NTCP taurocholate uptake inhibition.
Based on eight taurocholate uptake inhibitors with IC50 values ranging from 1
to 264 �M, a Catalyst pharmacophore model was generated to reveal two hydro-
phobic features and two hydrogen-bond donor features with a training set corre-
lation of r= 0.97 (Ekins et al. 2002 e). This model has yet to be further tested
and expanded with additional molecules, but may provide some in sight into
features required for interaction with this transporter.

14.8
Nucleoside Transporters

Nucleoside transporters transport both naturally occurring nucleosides and syn-
thetic nucleoside analogs that are used as anticancer drugs (e.g. cladribine, flu-
darabine and gemcitabine) and antiviral drugs (e.g. cytarabine and zalcitabine).
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These transporters can be classified into two broad categories based on sodium
dependence: the sodium-dependent concentrative transporters (CNTs) and so-
dium-independent equilibrative transporters (ENTs). Different subtypes of each
category exist. CNT1 (pyrimidine specific) is localized primarily in intestine and
kidney epithelia, whereas CNT2 (purine specific) and CNT3 (broad specificity)
have more broad distributions (Gray et al. 2004). ENT1, ENT2 and ENT3 all
have wide specificities and are widely distributed in mammalian tissues (Bald-
win et al. 2004). CNTs mainly exist in the apical membrane, whereas ENTs are
located in the basolateral membrane of epithelial cells, suggesting coordination
between CNTs and ENTs in transepithelial nucleoside transport (Casado et al.
2002; Baldwin et al. 2004). A recent study has compared the relative and unified
structural requirements of nucleosides for high-affinity interaction with CNT1,
CNT2 and ENT1 (Chang et al. 2004). Unique pharmacophore models were de-
veloped for each transporter based on inhibition data from a series of uridine
and adenosine analogs, including a variety of anticancer and antiviral drugs
(Wang and Giacomini 1999; Patil et al. 2000; Ekins and Swaan 2004). Besides
obvious similarities (two hydrophobic centers and one hydrogen-bond acceptor
on the pentose ring) among the three individual transport pharmacophores,
subtle differences set the individual transporters apart. hENT1 inhibitors require
the presence of both a hydrogen-bond acceptor and donor feature near 3�-C
while CNT1 and CNT2 inhibitors need hydrogen-bond acceptors on 3�-OH and
the 2-position of the pyrimidine ring, CNT2 inhibitors have an extra require-
ment of a hydrogen-bond acceptor on 5�-OH. With more pharmacophore re-
quirements, CNT2 is the most selective in inhibition while ENT1 has the broad-
est inhibitor specificity owing to its simple pharmacophore features. These
models illustrated the common feature requirements for nucleoside transporter
inhibition and identified distinctive feature requirements for each transporter
subtype. This therefore represents a model for future design of high-affinity nu-
cleoside analog anticancer and antiviral drugs.

14.9
Organic Cation Transporter 1 and 2

The OCTs influence the plasma concentration of many cationic drugs. They are
typically found in barrier epithelia, including the kidney, liver and intestine,
where they influence drug bioavailability, excretion and toxicity. To date, three
subtypes of polyspecific cation transporters named OCT1, OCT2 and OCT3 have
been cloned from different species (Grundemann et al. 1994, 1997; Gorboulev
et al. 1997). The human organic cation transporter hOCT1 is therefore impor-
tant in the elimination of many cationic drugs (Koepsell 1998). By assessing the
extent of inhibition in vitro of [3H]TEA uptake in HeLa cells stably expressing
hOCT1 using 22 diverse molecules, a pharmacophore was produced consisting
of three hydrophobic features and a positive ionizable feature (Bednarczyk et al.
2003). For a small series of eight phenylpyridinium and quinolinium analogs
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the correlation for observed and predicted IC50 values was low and the predicted
values were within the range of similar compounds in the training set. A more
recent study illustrated the binding requirement of both human OCT2 and rab-
bit OCT2 (Suhre et al. 2005) and used molecules that discriminate between the
orthologs to probe the qualitative differences between molecules with high affin-
ity to the transporters with a Catalyst HipHop alignment. An alignment of the
selective inhibitors for both transporters indicated distinctive differences for re-
cognition, manifested in features and angles recognized for each transporter.
Even though the features on these pharmacophores were similar, the approach
was able to identify a difference in the orientation of the hydrogen bonding fea-
tures (> 37�). This could infer variability in the disposition of critical amino
acids for interaction with inhibitors within both transporters and these models
may be useful alongside experimental data when deriving protein-based models
for these transporters.

14.10
Organic Anion-transporting Polypeptides (OATPs)

The OATPs are key membrane-bound transporters expressed in many organs
including intestine, liver, lung, choroid plexus, blood–brain barrier and other or-
gans (Tamai et al. 2000). This family of transporters is capable of mediating so-
dium-independent transport of a diverse array of molecules that are mostly an-
ions, in addition to organic cations, steroid conjugates, organic anions and xeno-
biotics (Bossuyt et al. 1996a; Hagenbuch and Meier 2004) by coupling uptake
with the efflux of bicarbonate (Satlin et al. 1997) or glutathione (Li et al. 1998).
The OATPs share some substrate overlapping specificity with other promiscu-
ous efflux transporters such as P-gp and MRP2, indicative perhaps of some de-
gree of coordination. The involvement of OATPs in the hepatic uptake of drugs
implies a potential for drug–drug interactions (Kim 2003), as exemplified by the
interaction between cerivastatin and cyclosporin A (Shitara et al. 2003) and also
cerivastatin, gemfibrozil and its glucuronide metabolite (Shitara et al. 2004).
Thirty-six mammalian OATPs have been identified, but only a few of these have
been characterized in any detail. An alignment of 18 inhibitors of the rat Oat-
p1a5 using GASP identified a hydrogen-bond donor and negatively charged re-
gions at opposite ends of a planar hydrophobic region (Yarim et al. 2005). Cur-
rently, 11 human OATPs have been identified and only recently have pharmaco-
phore models been generated for human OATP1B1 (Chang et al. 2005 b) and
rat Oatp1a1. These pharmacophore models were validated using external test
sets of compounds. All of these models comprised hydrophobes and hydrogen-
bond acceptors. The pharmacophores for these transporters are differentiated by
the exact number and position of these pharmacophore features.

Using the substrates described in the literature (Table 14.1), sufficient data
were also available with oocytes expressing OATP1A2 to enable a preliminary
pharmacophore for this transporter. The OATP1A2-oocyte data set consisted of
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Table 14.1 Literature Km data for human OATP1A2 derived
from oocytes expressing this transporter

Molecule Km (�M) Reference

BametR2 23.8 Briz et al. (2002)
Bamet ud2 14.1 Briz et al. (2002)
BSP 20 Kullak-Ublick et al. (1995)
Cholate 93 Kullak-Ublick et al. (1995)
DHEAS 6.6 Kullak-Ublick et al. (1998)
Deltorphin II 330 Gao et al. (2000)
DPDPE 202 Gao et al. (2000)
Estrone-3-sulfate 59 Bossuyt et al. (1996b)
Ouabain 5500 Bossuyt et al. (1996b)
N-Methylquinine 5.1 van Montfoort et al. (1999)
N-Methylquinidine 25.6 van Montfoort et al. (1999)
Taurocholate 60 Kullak-Ublick et al. (1995)
Tauroursodeoxycholate 19 Kullak-Ublick et al. (1995)
Thyroxine 3 Fujiwara et al. (2001)
Triidothyronine 2.7 Fujiwara et al. (2001)

Fig. 14.2 DHEAS mapping to the OATP1A2 pharmacophore
derived from data in Table 14.1. The pharmacophore includes
hydrogen-bond acceptors (green) and hydrophobes (cyan).



15 molecules (Km range 2.7–5500 �M), resulting in a Catalyst pharmacophore
containing one hydrogen-bond acceptor and two hydrophobes (Fig. 14.2, correla-
tion for training set r = 0.89). With only two hydrophobic features and one hy-
drogen-bond acceptor feature, human OATP1A2 (Fig. 14.2) appears non-selec-
tive compared with the other two pharmacophores generated to date (Chang et
al. 2005b). However, there is a good correlation between the in vitro data for the
same 10 substrates shared with rat Oatp1a1 (Table 14.2, r2 = 0.74), which is
slightly higher than for eight substrates shared between human OATP1B1 and
rat Oatp1a1 (r2 = 0.64) (Chang et al. 2005b). This suggests some degree of over-
lap but not identity between the substrate specificity for these three rat and hu-
man transporters. The OATP pharmacophore models could therefore help pro-
vide future insight into possible drug–drug interactions with these transporters
and will be validated with additional compounds in the future.

14.11
Breast Cancer Resistance Protein (BRCP)

The BCRP is an ABC transporter similar to P-gp whose expression results in re-
sistance to anticancer therapeutics and may limit intestinal absorption of drugs.
However, there have been limited studies to elucidate the selectivities of drugs
for P-gp and BCRP (Brooks et al. 2004). We used a published dataset of seven
topoisomerase inhibitors (Maliepaard et al. 2001) to construct a HipHop model
for BCRP. We then mapped the potent tyrosine kinase inhibitor Gleevec to this
pharmacophore as this compound has been suggested experimentally in con-
flicting studies as both a substrate and inhibitor of BCRP (Burger et al. 2004;
Houghton et al. 2004).
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Table 14.2 Summary of the molecules tested with human
OATP1A2 and rat Oatp1a1 [rat data summarized from the lit-
erature previously (Chang et al., 2005b)]

Molecule Mean human
Km (�M)

Mean rat
Km (�M)

Log mean
human
Km (�M)

Log
mean rat
Km (�M)

BSP 20 2.52 1.30 0.40
Cholate 93 54 1.97 1.73
DHEAS 6.60 5.00 0.82 0.70
Estrone-3-sulfate 59.00 8.25 1.77 0.92
Fexofenadine 6.40 32 0.81 1.51
Taurocholate 60 38.8 1.78 1.59
Ouabain 5500 2350 3.74 3.37
Deltorphin 330 137 2.52 2.14
Tauroursodeoxycholate 19 13 1.28 1.11
DPDPE 202 48 2.31 1.68



Gleevec clearly maps to the hydrophobic and hydrogen-bond donor features
in this pharmacophore (Fig. 14.3 a). We also used the published P-gp substrate
pharmacophore to analyze qualitatively whether gleevec maps well to these
pharmacophore features also (Fig. 14.3b). From this mapping, it seems that
gleevec fits well to this pharmacophore and also that for BCRP. Recently, several
studies have suggested that Gleevec binds P-gp with a Ki value of 18.3 �M,
using a calcein–AM efflux assay and indicated that it is both a substrate and a
modulator of human P-gp, suggestive of possible drug interactions via P-gp
(Hamada et al. 2003; Mahon et al. 2003). It is important, therefore, to design fu-
ture potent tyrosine kinase inhibitors without the propensity to bind to either of
these transporters and pharmacophore models may be useful in this process.

14.12
The Nuclear Hormone Receptors

The regulation of metabolic and transport proteins occurs via complex nuclear
hormone receptor mediated pathways (Ekins et al. 2002 e) among the pregnane
X-receptor (PXR), constitutive androstane receptor (CAR), glucocorticoid recep-
tor (GR), aryl hydrocarbon receptor (AHR) and probably many other receptors.
Some of these receptors have been modeled computationally with pharmaco-
phores (Ekins and Erickson 2002; Ekins and Schuetz 2002; Ekins et al. 2002e;
Mankowski and Ekins 2003, Schuster and Langer 2005) and they may bind
many pharmaceutical and environmentally relevant molecules. PXR is a tran-
scriptional regulator of CYP3A4 (Bertilsson et al. 1998; Blumberg et al. 1998;
Kliewer et al. 1998), CYP2C9, CYP2B6, P-gp and numerous other proteins and
is activated by structurally diverse molecules. In vitro EC50 data for 12 molecules
were used to generate a PXR pharmacophore model that defined key features of
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Fig. 14.3 A. A preliminary HipHop pharma-
cophore for the breast cancer resistance pro-
tein derived for seven inhibitors (Maliepaard
et al., 2001) showing SN-38 (yellow) and
gleevec (green). B. Gleevec mapped to the

previously published HipHop pharmaco-
phore for P-gp substrates (Ekins et al.,
2002c). The pharmacophores include hydro-
gen-bond acceptors (green), hydrogen-bond
donors (purple) and hydrophobes (cyan).



ligands binding to PXR (Ekins and Erickson 2002). It implicated at least four
hydrophobic features and a hydrogen-bonding feature that should be avoided in
future drug candidate molecules. The pharmacophore with the ligand SR12813
was fitted in the human PXR ligand binding site and compared with the orien-
tations of the crystallized molecule once the X-ray structure was available. The
pharmacophore was further tested by predicting 28 PXR ligands which had
available in vitro data. This pharmacophore has since been used to analyze the
binding of imidazole analogs to PXR, which result in increased apoA1 and
HDL-C in rats and mice (Bachmann et al. 2004). A second orphan nuclear re-
ceptor, CAR, has approximately 40% identity with PXR in the ligand-binding
domain and also regulates CYP2B6, CYP3A4 and other proteins. An alignment
of clotrimazole, androstanol and 5�-pregnane-3,20-dione yielded a pharmaco-
phore for human CAR, with three hydrophobic features and one hydrogen-bond
acceptor (Ekins et al. 2002a, e). This planar model indicated that CAR is a less
promiscuous receptor than PXR because it accommodates less flexibility in the
ligands binding to it. The GR has also been implicated in the induction of
CYP3A4 (Pascussi et al. 2000 a,b, 2001; El-Sankary et al. 2002; Usui et al. 2003).
A paper by Morgan et al. (2002) on the discovery of non-steroidal human GR
antagonists provided a nine-molecule data set from which a pharmacophore
model was constructed with an observed versus predicted correlation of 0.94 for
the training set (Mankowski and Ekins 2003) (Fig. 14.4). This pharmacophore
may be useful for predicting potential non-steroidal GR ligands as CYP3A4 in-
ducers or for searching databases for other non-steroidal GR ligands. Computa-
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Fig. 14.4 Pharmacophore-based database searching for drug
discovery. This example is based on a glucocorticoid receptor
dataset (Morgan et al., 2002).



tional models have also been generated for the AHR which regulates CYP1A1,
CYP1B1 and several phase II enzymes. These models seem to confirm the key
importance of planarity, molecular length, along with other parameters such as
the frontier orbital HOMO and lipophilicity (Lewis et al. 2002). A pharmaco-
phore derived with four nanomolar ligands, indirubin, indigo, ITE and TCDD
(Adachi et al. 2001; Song et al. 2002), suggested at least two possible planar
alignments, one of which included a hydrogen-bond acceptor (Mankowski and
Ekins 2003). Both of these pharmacophores for the AHR possessed multiple
key hydrophobic features. To date, the number of molecules available for model-
ing these receptors has been limited and this has restricted the size of the train-
ing sets and hence the predictive capability.

14.13
Human Ether-a-go-go Related Gene

Undesirable drug interactions may also occur via binding to ion channel pro-
teins such as the hERG potassium channel. Cisapride, terfenadine, astemizole,
sertindole and grepafloxacin were all drugs withdrawn from the market owing
to cardiovascular toxicity associated with alteration of the action potential via
this channel. It is understood that drugs or their metabolites may block this
channel, thereby prolonging the QT interval (the period between the start of
ventricular depolarization and repolarization) and in some cases this leads to
the potentially life-threatening ventricular arrhythmia. Utilizing in vitro IC50

data generated with cDNA-expressed hERG channels, the first published com-
putational pharmacophore model was derived with 15 molecules (Ekins et al.
2002b). This pharmacophore contained four hydrophobes and one positive io-
nizable feature (Ekins et al. 2002b) which was in agreement with a published
homology model, as the hydrophobic features coincide with the F656 and Y652
residues thought to be involved in �–� stacking with aromatic residues of hERG
inhibitors (Mitcheson et al. 2000). The hERG pharmacophore model produced
predictions for a 22-molecule test set with a correlation r2 of 0.83. Other sets of
ligands for different therapeutic targets (5-HT2A receptor anatagonists and phos-
phodiesterase-4 inhibitors) possess similar pharmacophores for their hERG in-
hibition capability (Ekins 2004), which is apparent when the models are aligned
(Ekins and Swaan 2004). A second group published a pharmacophore using a
larger data set of 31 inhibitors (Cavalli et al. 2002) and defined three aromatic
hydrophobic features and a central nitrogen. A third group using 28 molecules
including sertindole analogs produced a model which showed similar key fea-
tures (Pearlstein et al. 2003). All of these pharmacophores have similar molecu-
lar features but with differences in their exact positioning, which might suggest
either some flexibility in this channel or multiple binding sites at different
points which is in common with other promiscuous proteins (Ekins 2004). Ulti-
mately, these models have been useful for describing interactions in the channel
and enabling predictions for experimental verification.
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14.14
Conclusion

The computational pharmacophore work discussed here has considered several
targets implicated in ADME/Tox: the major P450 enzymes, UDP-glucuronosyl
transferase, various transporters, the nuclear hormone receptors and the potas-
sium channel hERG. There are many other human proteins that are also rele-
vant to ADME/Tox where additional pharmacophore modeling studies might be
useful. These include but are not limited to the organic anion transporter, vita-
min transporter, multidrug resistance protein, flavin-containing monooxygenase,
epoxide hydrolase, sulfotransferase and glutathione S-transferase. In some of
these cases other types of QSAR models or homology models have been applied
but pharmacophores may also be useful.

Computational pharmacophore approaches have been used to describe the
features that ligands possess that ultimately relate to key interactions for recog-
nition within the binding sites of these proteins. The computational models
suggest that in addition to key hydrogen-bonding features present in most mod-
els, there are multiple hydrophobic interactions shared by all of the proteins in-
volved in undesirable drug interactions (Ekins 2004). This may go some way to
explain the general promiscuity of these proteins, which relates to their overall
protective ability against a wide array of molecule structures. Multiple pharma-
cophores may also be required for each protein to predict affinity adequately for
different classes of molecules. These models may also be merged to show quali-
tative commonalities between different datasets. Data for the same protein gen-
erated in different in vitro systems can also be successfully combined to result
in what we have termed a meta-pharmacophore approach (Chang et al. 2005 b).
Ultimately these pharmacophores could certainly be used to rapidly search data-
bases to identify and remove undesirable molecules or suggest molecules that
could be used as novel experimental probes for the protein in question. To date
there have been few instances where such ADME/Tox-related pharmacophores
have been used for database searches (Langer et al. 2004; Ekins et al. 2005b)
(Fig. 14.4) and they represent a cherry-picking approach to filter compound ven-
dor databases further.

These ADME/Tox pharmacophore models can also be combined in a multidi-
mensional approach to assess drug interactions and possible toxicity alongside
other computational models for the therapeutic target (Ekins et al. 2002a; Shima-
da et al. 2002; Young et al. 2002; Ekins 2003). This combined modeling approach
could be used as a decision criterion for molecule selection (Ekins et al. 2004). The
integration of the models described above with computational technologies such
as de novo growth, docking algorithms and virtual library screening will assist
in improving the rate of discovery of bioactive molecules (Shimada et al. 2002)
with optimal biopharmaceutical properties. Actively combining the insights from
in vitro and computational models will result in a holistic or systems biology-based
understanding of the many proteins and their interactions in regulation, transport
and metabolic pathways (Ekins et al. 2002a, 2005a, c,d). We suggest therefore that
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the application of computational methods such as pharmacophores alongside ex-
perimental methods may go some way to improving the efficiency of early ADME/
Tox molecule profiling and also later stage lead optimization. This will hopefully
lead to an improved success rate for drug discovery and provide a useful method to
eliminate late stage failures due to predictable drug interactions that would nor-
mally be identified during clinical trials.

The computational pharmacophore approach sets educational challenges as
drug discovery scientists should be trained to use actively a combination of in
vitro and computational models for multiple proteins (Ekins and Swaan 2004).
We have seen some progress over the last decade in the use of computational
approaches in ADME/Tox and pharmacophores in particular have been broadly
applied. In the future, if these models are to be more widely applied they will
need to become more accessible to other scientists outside computational chem-
istry groups. At present there are few if any freely available pharmacophore
technologies and perhaps we will see academic groups challenge the status quo
that has dominated this field for over a decade. One could imagine that stan-
dards for open source pharmacophore model generation, sharing and applica-
tion would greatly facilitate even broader application of pharmacophore models
in this and other fields. We look forward to such future developments for ex-
panding the scope of pharmacophore applications.
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Nicolas Triballeau, Hugues-Olivier Bertrand, and Francine Acher

15.1
Introduction

The objective of this last chapter is to ask a series of questions related to phar-
macophore model validation and provide a few keys to answer them. Obviously
the master question that comes up when one reaches the validation step in
pharmacophore investigation is “Do I have a good model?”. Addressing such a
question requires one first to get back briefly to the very definition of pharmaco-
phore. Indeed, the goodness of a given model first depends on how close the
generated model is to the ideal pharmacophore and therefore depends on the
definition one chooses to adopt. Box 1 reports several of them.

Interestingly, there is a fairly good consensus between definitions, including the
first one that was formulated when Paul Ehrlich first coined the term “pharma-
cophore” about a century ago. However, apart from definition 4, which evokes
the knowledge of a lead series, they are all very theoretical, making the pharma-
cophore a conceptual template, an idea for the mind, more than an entity en-
dowed with reality. Indeed, in the real world, one is limited by two material as-
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Box 1. Examples of pharmacophore definitions

Definition 1 (Paul Ehrlich, 1909): A pharmacophore is a molecular framework that carries
(phoros) the essential features responsible for a drug’s (pharmacon) biological activity [1].

Definition 2 (Peter Gund, 1977): A pharmacophore is an arrangement of molecular fea-
tures or fragments forming a necessary but not sufficient condition for biological activity
([2] quoted in [3]).

Definition 3 (IUPAC recommendations, 1998): A pharmacophore is the ensemble of steric
and electronic features that is necessary to ensure the optimal supramolecular interactions
with a specific biological target and to trigger (or block) its biological response [4].

Definition 4 (IUPAC recommendations, 1997): Pharmacophore generation is a procedure
to extract the most important common structural features relevant for a given biological
activity from a series of molecules with a similar mechanism of action [5].



pects: (1) the quality of the available dataset and (2) the method envisaged to
perceive the pharmacophore.

In fact, most (if not all) datasets are incomplete and multiple pharmacophore
solutions can be consistent with the definition. Van Drie insists on the fact that
some datasets are easy to work with and some are hard [6, 7]. Regarding the
method being used to search the pharmacophore, we are first limited by the
oversimplification that had to be performed to describe drug–target interactions
for computer programs. To name a few, they assume that similar compounds
will bind in the same way, they assume that all H-bond interactions have the
same strength and they assume that water molecules have the same behavior
upon binding of every ligand. Although sufficient in many cases, such postu-
lates have numerous counterexamples [8]. Second, we should be aware either of
inherent errors of algorithms used to generate pharmacophore or, alternatively,
of the bias introduced by a manual construction. In fact, experts will often call
the resulting solutions “pharmacophore models” or “hypotheses” to affirm their
difference from the ideal pharmacophore that is capable of accurately predicting
the activity of any envisaged compound.

In summary, pharmacophore model validation is the building of a body of
evidence by first relying on validation methods adapted to the search algorithm
(and its limitations) and second by resorting to approaches that will incorporate
external data and therefore account for some inherent imperfections of the data-
set. The first section of this chapter will report some of the most used validation
methods and which are related to one or both of these aspects.

Many case studies have been described for pharmacophore models. The sec-
ond section will report some success stories in which pharmacophore models
have been used. The validation methods to which the authors have to resort will
be particularly emphasized. Undeniably, the ultimate validation method for a
model is to demonstrate its practical usefulness for drug discovery!

In the third and last section, we will report the construction of a new pharma-
cophore model for metabotropic glutamate receptor subtype 4 (mGlu4R) ago-
nists. In spite of the fact that the available dataset is particularly difficult for
pharmacophore modeling, we will show that the validation methods used al-
lowed us to have great confidence in the hypotheses generated.

15.2
Validation Methods: Different Answers Brought to Different Questions

15.2.1
Software-related Validation Methods

15.2.1.1 Ligand-based Pharmacophore Research
Most automated pharmacophore model generators are equipped with an inter-
nal scoring method to rank different hypotheses (here termed “ranking func-
tion”) and provide the expert with the most relevant solutions. Indeed, real-life
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datasets often have inherent ambiguities and different models (sometimes sev-
eral tens of them) can be output by a given search algorithm. Knowing how the
software searches and estimates acceptable models is the first prerequisite to
understand the solutions, better comprehend their limitations and adapt valida-
tion accordingly. The design features of the most commonly used programs are
summarized in Box 2.
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Box 2. Ligand-based automated pharmacophore model generators

Catalyst HipHop [9]

Objective: Find common feature configurations amongst a set of active molecules.
Algorithm: HipHop uses a pruned exhaustive search method. Starting with simple two-fea-
ture pharmacophores, the program tries to add one extra common feature at a time until
no larger common pharmacophore configuration exists [10]. Combinations that cannot be
completed to reach a minimum number of features are not further explored.
Ranking function: Its internal scoring function depends on the displacement in the align-
ment of the input molecules and the uniqueness of the pharmacophore (e.g. other things
being equal, a positive ionizable feature is more unique than a hydrophobe feature).

Catalyst HypoGen [9]

Objective: Retain models with features that better explain the differences between activ-
ities.
Algorithm: In a constructive phase, HypoGen uses a simplified version of HipHop to cata-
logue all common pharmacophores among the most active compounds. This pharmaco-
phore space is then reduced to solutions that match less than half of the least actives. In
a last stage, 3D-QSAR models are built [via a linear regression between the geometric fit
and the log(activity) of the compounds] and optimized by simulated annealing [11].
Ranking function: HypoGen tries to minimize a function that describes the cost of the
model in number of bits (Occam’s razor principle: all other things being equal, the sim-
plest model is the best). The cost function is a weighted sum of the error cost (divergence
of the estimated activities from the actual values), the configuration cost (entropy cost
that depends on the size of the search space) and weight cost (divergence of the feature
weights from their theoretical contribution to the activity –2.0).

DISCO [12]

Objective: Find 3D alignments of the pharmacophore features in different molecules.
Algorithm: DISCO uses the Bron-Kerbosch method to detect the maximum cliques in a giv-
en graph [13]. Here the graph is made of nodes representing ensembles of matching fea-
tures between molecules. Two nodes are connected by a graph edge if the two feature en-
sembles can be aligned simultaneously.
Ranking function: DISCO outputs all possible solutions. It is up to the user to decide their
relevance further [14].

GASP [15]

Objective: Determine the correspondence between functional groups in different molecules
and the alignment of these groups in a common geometry.
Algorithm: GASP uses a genetic algorithm that iteratively optimizes a population of chro-
mosomes according to the fitness function described here below [16]. Each chromosome
encodes angles of rotations about flexible bonds and mappings between features.



If one compares Catalyst-HipHop with Catalyst-HypoGen, for instance, it is
common to obtain very different models. Since HipHop searches common fea-
tures amongst active molecules, the output models may have retained features
that HypoGen may have discarded as not being relevant to explain activity. The
example that we will detail at the end of this chapter is a good illustration of
this. It is worth mentioning that this is due to the input dataset and that Cata-
lyst provides solutions to circumvent this.

In general, the ranking function is only adapted to the search algorithm and,
although the contribution of their different factors may be tweaked by the user,
it is hard to gauge the validity of the proposed models with the resulting output
values. In fact, the objective of ranking functions is more to compare different
solutions together than to give insight into the validity of the models. Some
authors, however, have relied solely on them to select a pharmacophore model
and successfully used it in their project. The following example is an illustration
of this point.

Example (Dayam et al., 2005)
Dayam et al. used four �-diketo acid HIV-1 integrase inhibitors to build several
HipHop hypotheses [18]. Despite some noticeable differences from the resolved
protein–ligand complexes, the first-ranking hypothesis could be used as a filter
prior to docking in the binding site. It is worth noting that the retained model
contained all the features that one can determine from the 3D structure,
although not in the correct orientation. At the end of their screening campaign,
48 out of the 110 virtual hits exhibited IC50 below 100 �M (hit rate: ca. 43%).

Catalyst-HypoGen’s cost function is an exception and is commonly used as a
first step for validation purposes. The so-called “cost analysis” provides an an-
swer to the question, “How strong is the activity signal given the input parameters
and dataset?”. In fact, the program will always output two reference hypotheses
to give insight into the significance of the results. The fixed cost is the calcu-
lated cost for the ideal model that fits the data perfectly. It is therefore the low-
est possible cost for the specified parameters and dataset. In contrast, the null
cost is the cost of the hypothesis which predicts all activities at the average of

15 Are You Sure You Have a Good Model?328

Ranking function: The fitness function is the weighted sum of three terms: number and
similarity of overlaid elements, common volume of all molecules and internal van der
Waals energy of each molecule.

Phase [17]

Algorithm: Phase uses a partitioning algorithm in which pharmacophore configurations are
placed in multi-dimensional boxes. Each box represents a common pharmacophore only if
it contains a sufficient number of active ligands. The resulting alignment can be used to
build 3D-QSAR models. To our knowledge, this algorithm has not been further described
in the literature nor validated.
Ranking function: The scoring function is made of the weighted contributions of three as-
pects: quality of the alignment, similarity (common volume/total volume) and selectivity
(rarity).



the input values. Obviously, the wider the difference between the fixed and null
scores, the greater is the significance of the results. As a rough rule of thumb,
a 40–60 bits difference between the cost of an output hypothesis and the cost of
the null hypothesis leads to a predictive correlation probability of 75–90% [19].
Therefore, if the fixed – null cost difference is below 40–60 bits, finding a pre-
dictive model will probably be difficult (but not impossible).

15.2.1.2 Protein Structure-based Pharmacophore Research
The other commonly used approach to building pharmacophore models is to
exploit the information provided by protein and protein–ligand complexes the
structures of which have been resolved. Many programs are available using sim-
ple approaches such as MOE [20] and DS ViewerPro [21] that allow one to build
pharmacophores manually into more sophisticated ones, such as LigandScout
[22, 23] for automatic pharmacophore perception from 3D complexes. Other
methods, such as structure-based focusing (SBF) [24] and MUSIC (which ac-
count for protein flexibility while building a hypothesis [25, 26]), can be used
even if the protein binding site is empty by combining accessible interaction
sites determined with geometric or energetic criteria.

15.2.1.3 Critical Remarks Regarding Structure-based Pharmacophore Models
Starting solely from the structural analysis of a few protein–ligand complexes,
many studies have been published claiming to extract the “pharmacophore”. In
fact, although protein–ligand complexes can clear up some ambiguities about a
pharmacophore, strictly, the extracted information cannot be termed “pharmaco-
phore” if it is not followed by a proper structure–activity relationship analysis.
Because such complexes only display active molecules bound to the target site,
they do not bring any information regarding the requirement of each interac-
tion to the activity. Worse, it may be impossible to extract a distinctive pharma-
cophore with the structure-based method: In the case of receptor antagonists or
enzyme inhibitors (i.e. most cases of medicinal applications), different ligands
can exhibit unique interaction patterns. Provided that they protrude in a part of
the binding site that the natural agonist (or substrate) needs to access, a compe-
tition can occur (Fig. 15.1 illustrates this point). In the case of agonists, how-
ever, the pharmacophore is more likely to be univocal since the ligands have to
induce a more specific conformational modification on the receptor in order to
trigger the activation. In summary, direct structural analyses of protein–ligand
complexes are rarely capable on their own of providing an acceptable pharmaco-
phore model without being properly validated.

Whether the plausible models are solutions obtained by a ligand-based or pro-
tein-based approach, the first validation screen is certainly the expert himself or
herself, who will discard unsatisfactory solutions before further analysis.
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15.2.2
Visual Inspection

Do I like the proposed hypothesis? Although very subjective, this approach tends
to counter-balance the inherent imperfections of automated methods. Programs
such as DISCO and HipHop will provide multiple output models among which
the expert has to choose the most acceptable. The eye is often the first and best
critic for the pharmacophore hypotheses.

Thus, the nature of chemical features might differ between two hypotheses
and the most specific is generally favored. For instance, models with more fea-
tures will be favored as well as models with directional features (H-bond donor/
acceptors, ring aromatics).

Models with less frequent features can also be more interesting. Obviously
acidic/basic groups are less common than hydrophobic moieties amongst
known drugs. A possible illustration of this point is to analyze the composition
of a database containing “drug-like” molecules in term of chemical features. Fig-
ure 15.2 reports the number of compounds from the Derwent World Drug In-
dex (WDI) 2003 database that map the most common chemical features. Inter-
estingly, several hydrophobic features are easily found amongst drug-like mole-
cules whereas ionizable groups are more seldom, especially if several are re-
quired. In contrast, it is fairly common to find up to four (and more)
hydrophobic groups in drug-like molecules: More than 25% of Derwent WDI
contains more than three hydrophobic features. Hence ionizable groups will cer-
tainly bring more selectivity if the model is to be used for database mining.

One may also favor models with spread-out features over models with fea-
tures clustered on a specific part of the ligands. This may occur when the input
molecules are large and feature rich, such as peptides and peptide mimics.

One may also prefer the models that align similar molecules (e.g. with the
same scaffold) in the same orientation to be in line with one of the fundamen-
tal assumptions of pharmacophore modeling, which states that similar com-
pounds have analogous binding modes. Despite rare counterexamples, drug dis-
coveries in modern history have more than backed up this assumption.
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Fig. 15.1 Schematic representation of the binding mode of a
substrate in an enzyme to be inhibited (left). Inhibitor 1 (cen-
ter) and 2 (right) are both competitive inhibitors but their in-
teraction pattern is different, making pharmacophore investi-
gation tricky.



15.2.3
Consistency with Structure – Activity Relationships

As a second prerequisite, a valid pharmacophore model has to provide insight
into the structure–activity relationships (SARs) or at least explain them. At this
stage, the question is, “Can the hypothesis interpret a SAR?” Such analysis will
judge without appeal a poor dataset or an over-simplistic pharmacophore
searching method.

15.2.3.1 Some Limitations of Computer Programs
Computer programs are often limited by the means that they have to explain
the inactivity of some chemical series members. By design, a molecule is de-
clared active if at least one low-energy conformation can map all chemical fea-
tures of the model. In other words, a molecule is inactive only because it cannot
exhibit the complete interaction pattern required by the binding site. In reality,
many other reasons can be put forward to explain the inactivity of a compound.
Martin evokes the following [14]:
1. Despite its ability to satisfy the pharmacophore model, a compound can con-

tain groups that sterically prevent interaction.
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Fig. 15.2 Percentage of the Thompson Der-
went WDI database (2003) that maps com-
mon Catalyst features. Only entries with mo-
lecular weights between 100 and 600 were

considered (that is, a total of 51726 entries).
Colors show the fraction of the database that
contain at least one (black), two (dark grey),
three (light grey) and four (white) features.



2. It can contain other groups that are unfavorable to activity (e.g. an acidic moi-
ety can disrupt the favorable interaction when it is located in the vicinity of
an acidic residue of the binding site).

3. It is less soluble than its bioactive concentration.

It is worth noting that a new Catalyst module (Catalyst-HypoRefine [9]) is capable
of accounting for false positives due to unfavorable steric contacts (point 1) by auto-
matically placing exclusion volumes on strategic points around either HipHop or
HypoGen models. To our knowledge, electrostatic or hydrophobic repulsions
(point 2) are not yet handled by any pharmacophore searching programs. Field-
based 3D-QSAR models (CoMFA [27], CoMSIA [28], etc.), on the other hand, have
long been used to highlight such unfavorable zones (both steric and electrostatic),
but most require the expert to provide a somewhat unrealistic alignment of active
and inactive molecules.

15.2.3.2 Retained Chemical Features
If the input datasets on the other side do not bring any information about the
influence (presence or absence) of a given chemical group on the binding affini-
ty, one cannot expect the program to have a correct SAR interpretation on the
missing information. In general, datasets are selected by experts in order to be
as instructive as possible, but some pieces of information may simply not yet
be available. Therefore, from a qualitative point of view, models that incorporate
chemical features which are known to be significant to the activity should be fa-
vored. The use of a “test set” can help underline missing SAR features (see Sec-
tion 15.2.4.3).

15.2.3.3 Spatial Arrangement
The space arrangement of the important feature is also to be considered. In-
deed, many SAR studies include length modifications in scaffold side-chains to
estimate the influence of flexibility and steric tolerance of the binding site (see,
for example, [29, 30]). Chirality of the model is another spatial criterion that is
necessary if two enantiomers of different activity level are to be discriminated.
At least four points are necessary, but not sufficient to assure enantio-selectivity.
The use of directional features (H-bond acceptor/donor) or shape criteria can
help in obtaining chiral models.

Example of pharmacophore model with key spatial arrangement
(Jullian et al., 1999; Bessis et al., 1999)
Good pharmacophore models are generally capable of predicting the bioactive
conformation of the bound ligands. Jullian, Bessis and co-workers, for instance,
have demonstrated that despite a more stable folded conformation in aqueous
buffer, l-glutamate adopts an extended conformation when bound to metabotro-
pic glutamate receptors (mGluR) [31, 32]. One year later, the publication of the
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crystal structure of l-glutamate bound to the ligand binding domain of mGlu1R
[33] confirmed this key assertion for drug design.

15.2.3.4 3D-QSAR Pharmacophore Models
Some pharmacophore searching programs are designed to provide 3D-QSAR
models that are capable of predicting the activity from a quantitative point of
view. Apex-3D [34], Catalyst HypoGen [9] and Phase [17] are examples. Conse-
quently, such a model should have correct statistics and abide by the common
QSAR validation approaches. Box 3 describes some of them very briefly as they
have been reviewed elsewhere (see [35–41]).
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Box 3. Statistical measures of the quality of linear 3D-QSAR pharmacophore
models

For a linear model, the estimated activity �yi (in log units) of a molecule (open circle on
the graph) is a function of its geometric fit on the pharmacophore xi: �yi � a � xi � b. The n
observed activities (yi, gray circles) are compared with the predictions �yi with the three fol-
lowing sums:

Total sum of squares: TSS �
�n

i�1

�yi � �y�2

Explained sum of squares: ESS �
�n

i�1

��yi � �y�2

Residual sum of squares: RSS �
�n

i�1

�yi � �yi�2

One can show that TSS � ESS � RSS

where �y is the arithmetic mean over all yi. If the model is fitted with the least-squares tech-
nique, �y is also the arithmetic mean over all �yi.



Catalyst-HypoGen proposes another interesting validation method by analyzing
the statistical significance of the SAR described by a model. Based on the Fisher
randomization test, the observed activities are scrambled and randomly redis-
tributed to the compounds of the training set. If some models generated from
this new scrambled dataset exhibit a lower cost than the reference model, the
significance of the original model is weakened. Of course, this “scrambling”
work needs to be performed a certain number of times to reach a given signifi-
cance level. Thus, if a total of Nrun HypoGen runs are performed (reference and
randomised runs) and nlc models of lower cost than the reference are num-
bered, the significance is given by

Significance � 1 � 1 � nlc

Nrun

� �
� 100

For instance, if a significance level of 95% is to be reached, at least 19 randomi-
zation runs need to be performed. If one cannot reach an acceptable level of
significance, a new dataset and different searching parameters must be used.
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The Pearson’s correlation coefficient (r) gives an insight into how well a linear model fits the
dataset; in other words, “how much of the activity can be explained by a linear model?”. The
closer r2 is to 1, the better the model is. An r2 of 0.89, for instance, means that 89% of
the variance is explained by the linear model.

r2 � ESS
TSS

� 1 � RSS
TSS

�3�1�

The standard deviation of error of prediction (SD) gives an insight into the accuracy of the
prediction. If one considers the errors being normally distributed, more than 68% of esti-
mations are performed with an error below SD.

SD � 1
n � 2

� RSS
� �1�2

�3�2�

Similarly, the root mean square (RMS) of errors gives an insight into the errors of the pre-
diction. In Catalyst-HypoGen, the RMS is scaled according to the uncertainty of each activ-
ity measure (Unc):

RMS � 1
n
�
�n

i�1

�yi � �yi�2

log �Unci�

� �1�2

�3�3�

The F statistic illustrates the overall statistical significance. By comparing the calculated val-
ue with tabulated values for 1 and n � 2 degrees of freedom (linear model) at a given level
of confidence, one can assert that the model is or is not significant at this level:

F � ESS
RSS��n � 2� �3�4�



15.2.4
External Data to Back Up a Pharmacophore Model

15.2.4.1 Biophysical Data
Returning to the definitions of pharmacophore (Box 1), one of the most direct
methods to validate a pharmacophore model is to show its consistency with the
interaction pattern that known ligands exhibit with the targeted protein site.
The Protein Data Bank (PDB, http://www.rcsb.org/pdb/) is the de facto reposi-
tory for macromolecular structures resolved by NMR or diffraction methods
[42]. The structures of many protein–ligand complexes have been resolved and
their atomic coordinates can be downloaded from the PDB web portal for
further analysis.

Example of a structure-based pharmacophore model (Brenk et al., 2003)
Brenk et al. have successfully used structure-based pharmacophore models for
tRNA guanine transglycosylase (TGT) inhibitors [43]. Starting from two com-
plexes resolved by X-ray diffraction, three different hypotheses were derived de-
pending on the presence or absence of a structural water molecule. The result-
ing pharmacophore model envisaged was an ensemble of these three hypoth-
eses constructed with SYBYL [44]. The authors took particular care to validate it
by showing that it explained structure–activity relationships. The inclusion of
the model in a virtual screening project as a filter prior to a docking step al-
lowed them successfully to enrich a composite database of ca. 800 000 mole-
cules. Out of the nine selected molecules, seven were inhibited by TGT in the
micromolar range and two in the sub-micromolar range.

Albeit very prudent, Ghose and Wendoloski suggested the use of a biophysical
data source to determine the conformation of the free ligand as another means
to validate a pharmacophore model [45]. After all, when one has no other data
to start with, why would one discard it?

15.2.4.2 Other Published Pharmacophore Models
Although probably not sufficient alone, another commonly used approach to
bring further credit to a model is to compare the resulting hypothesis with a
previously reported pharmacophore hypothesis. Thus, Barbaro et al. [30] corre-
lated their �1-adrenergic receptor pharmacophore model with the work of De
Marinis et al. [46]. Laggner et al. [47] as well reported similarities between their
�1 receptor pharmacophore hypothesis and the model published by Glennon et
al. in 1994 [29]. At that time, a thorough analysis of SAR data allowed the
authors to propose a simple pharmacophore model containing three chemical
features: two hydrophobic sites A and B and an amino moiety (Fig. 15.3 a).
Using a more modern approach with Catalyst-HypoGen as a pharmacophore
search engine, Laggner et al. described a more sophisticated model which
agrees remarkably with Glennon’s initial hypothesis (Fig. 15.3b).
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15.2.4.3 The “Test Set” Approach and the Kubinyi Paradox
Since pharmacophore model design is often used when no three-dimensional
information is available for the protein target, the “test set” approach is probably
the most commonly used validation method, especially with 3D-QSAR pharma-
cophore models.

The idea is to take apart some molecules of known activity from the dataset
set to confront later the generated model with different compounds to those of
the “training set”. In theory, this method brings an answer to the question,
“Can we extrapolate the predictions of the model to other different molecules?” and it
is certainly legitimate that one asks this question if the model is to be further
exploited. For 3D-QSAR models, a statistical metric (often termed r2

pred) similar
to r2 [see Eq. (3.3)] can be calculated.

The problem is how to define “different” in the above question. If the mole-
cules of the training set are too similar to those of the test set, this aspect of
the validation is not very challenging for the model and, conversely, if they are
too different from each other, there is a risk of depriving the training set of
some key SAR information. Therefore, molecules kept for the test set should be
neither too similar nor too different from the training set compounds.

To circumvent this issue, “cross-validation” methods have been proposed to
evaluate the internal predictivity of the model by discarding one or several com-
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Fig. 15.3 Sigma-1 receptor pharmacophore
hypotheses reported by Glennon et al. [29]
(a) and Laggner et al. [47] (b; the red and
cyan spheres represent positive ionizable
and hydrophobic features respectively). The

volume colored white accounts for the shape
a high-affinity ligand. Reprinted with permis-
sion from [29] and [47]. Copyright 1994 and
2005, American Chemical Society.



pounds at a time from the training set and to compute an average correlation
coefficient (q2) with the subsequently derived models. Although long used by
the QSAR community, Kubinyi et al. showed in a relatively recent survey that
r2
pred and q2 are not correlated [48]. In other words, internal predictivity cannot

guarantee extrapolability. This “Kubinyi paradox” is the strongest caveat when
one relies on the “test set” approach for pharmacophore validation.

Furthermore, real datasets are often redundant and/or too small to rely on
this idea and/or come from disparate in vitro assays. Once again, the know-how
of the expert is key when it comes to deciding which molecule is to be taken in
the training set.

A different but related approach consists in mining databases containing
some known active compounds.

15.2.5
Database Mining

Many strategies have been proposed to enrich a set of molecules with active
compounds by virtual screening: similarity search [49], docking-scoring [50],
QSAR [51] and, of course, pharmacophore models. This section reviews some
methods that can be applied to any of those approaches.

If a model is to be used as a query to search for active molecules in a data-
base, a common validation method is to demonstrate its performance on a data-
base for which the pharmacological activity of each compound is known (or at
least flagged as active or inactive). Most often, such databases are made artifi-
cially for this purpose. Thus, after gathering a set of active compounds, one
would seed them in a larger database of randomly selected (and supposedly in-
active) molecules, the idea being to mimic some HTS results. The model is fi-
nally evaluated according to its ability to search the database for the actives and
perform better than a random search (enrichment).

Although frequently used, this method has recently been called into question
regarding the choice of the decoys (e.g. [52, 53]). Indeed, if selected randomly,
compounds to confound the query are often inactive for obvious reasons that do
not require a sophisticated model to discard them (the molecular weight is gen-
erally a good discriminator, for instance). In a real HTS run, molecules are of-
ten congeneric as they come from parallel synthesis and, consequently, are
structurally more similar to one another. It would therefore be more reasonable
to select decoys according to their similarity to the active molecules. In other
words, such inactive compounds are more likely to produce a stronger interfer-
ing noise, making the search for activity signals more challenging for the query
model. The problem is that one needs to be sure of the inactivity of the decoys
as they are more likely to be actives than the randomly selected molecules. Such
a piece of information is not always easy to acquire.

Several authors have successfully use pharmacologically indexed databases
such as the Thomson Derwent WDI [54] and the KEGG COMPOUND [55] data-
base in which several thousand molecules are recorded according to their
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known biological activities [47]. Screening of such databases allows one to vali-
date the model for database mining by assessing its ability to retrieve active
molecules (true positives) and discard inactive ones. However, it is worth men-
tioning that the false negative rate can be artificially high since a pharmaco-
phore model is valid for a defined binding site. Hence one cannot expect it to
retrieve molecules that bind to a different pocket of the same target.

15.2.5.1 Some Metrics to Assess Screening Performances
A plethora of metrics have been proposed to quantify the performance of a
model upon database mining. Not all have been used in the particular case of
pharmacophore models, but they are all applicable in the virtual screening con-
text. Some have even been coined in a very different area to virtual screening.
Matthews’ correlation coefficient, for instance, was first proposed to evaluate the
accuracy of the secondary structure predictions for T4 phage lysozyme. Since
the idea is to be able to discriminate between good and bad predictions, Fri-
murer et al. [56] and later Goldblum [57] have used it in the context of drug dis-
covery. Box 4 reports some metrics the optimization of which helps in selecting
the best performing hypothesis.
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Box 4. Metrics for performance assessment in virtual screening

In order to facilitate the comparison between the metrics, the equations have been tran-
scribed according to the notation summarized in the diagram shown. In a database con-
taining a total of N entries among which A molecules are active on the investigated target,
the virtual screening protocol selects n compounds as being actives.

TP: true positives

TN: true negatives

FN: false negatives

FP: false positives

Sensitivity [53, 58]:

Se � TP
A

� TP
TP � FN

�4�1�
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Specificity [53, 58]:

Sp � TN
N � A

� TN
TN � FP

�4�2�

Yield of actives [59, 60]:

Ya � TP
n

�4�3�

Enrichment [60–62]:

E � TP�n
A�N

�4�4�

Statistical significance [63]:

S �
�A

k�TP

A
k

� �
N � A
n�k

� �
N
n

� � �4�5�

Balanced labeling performance [41, 64]:

�bal � 1
2
� Se � 1

2
� Sp �4�6�

Accuracy [60, 65, 66]:

Acc � TP � TN
N

� A
N

Se � 1 � A
N

� �
� Sp �4�7�

Ford’s M [67]:

M � � � Se � �1 � �� � Sp �4�8�

where � is an adjustable weighting coefficient.

Discrimination ratio [68]:

DR � TP�A
TN��N � A� �

Se
Sp

�4�9�

Information content [69]:

I � TP log
TP
FP

� �
� FN log

FN
TN

� �
�4�10�



Each of these metrics gives a different insight into the performance of a screen-
ing workflow in retrieving active molecules or discarding inactive ones. Jacobs-
son et al., for example, used accuracy, sensitivity (which they termed the “re-
call’), yield of actives (termed “precision of the active class’) and enrichment to
characterize the performance of different structure-based virtual screening work-
flows [60].

Among all the equations, the yield of actives [Eq. (4.3)] and the enrichment
[Eq. (4.4)] are probably the most often used: the first is the hit rate one that
would have if the n selected molecules were tested (again) and the second indi-
cates how many times the virtual screening workflow performs better than a
random selection in retrieving active compounds.

More directly related to pharmacophore model validation and hit list assess-
ment, Güner and Henry designed the GH score [Eq. (4.12)] [59]. The different
weighting coefficients are adapted to favor the high value of actives (Ya) over
sensitivity (Se) because databases may contain compounds that bind the target
in a different site (or interaction pattern) and which, obviously, cannot be identi-
fied by the pharmacophore model. The true meaning of several of the above
metrics can be difficult to comprehend, but interestingly, many rely on two sim-
ple values: sensitivity [Se, Eq. (4.1)] and specificity [Sp, Eq. (4.2)]. For instance,
one would notice that the “balanced labeling performance”, the “accuracy”,
Ford’s M and the “analysis of efficiency” are all linear combinations of sensitiv-
ity and specificity (if �= A/N = 1/2 and Us = 0, they even are equal).

In fact, sensitivity and specificity are the main characteristic features of any
test which is to be used to categorize two populations. Se gives an insight into
the ability of the model to select truly active molecules and Sp, in contrast, is
the goodness in discarding inactive compounds. These two terms have the prop-
erty to evolve in opposite directions when the number n of selected molecules
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“Matthews” correlation coefficient [56, 70]:

C � TP � TN � FN � FP

�TN � FN��TN � FP��TP � FN��TP � FP�� �1�2
�4�11�

“Goodness of hit list” [59]:

GH � 3
4
� Ya � 1

4
� Se

� �
� Sp �4�12�

Analysis of efficiency [71]:

AE � 1
2
� Se � Sp� � � 1 � Us

Utotal

� �
�4�13�

where Us and Utotal are the number of compounds of unknown activity selected and the to-
tal number of compounds of unknown activity in the database.



changes. Indeed if most of the database is selected (n�N), most compounds
are taken as actives and a minority of the truly active molecules will be lost.
This maximizes Se (Se�1). However, specificity will be minimized as most of
the inactive molecules will be in the selection. The situation is reversed in the
case where n is very small (n�0). Consequently, one cannot optimize both Se
and Sp at the same time and a trade-off is to be determined. If one can choose
to rely on one of the above metrics to find an optimum, we have recently advo-
cated the use of a simpler graphical technique which has been adopted as a
gold standard in many other research areas: the receiver operating characteristic
(ROC) curve method [53].

15.2.5.2 The ROC Curve Approach
Receiver operating characteristic (ROC) curves basically report the evolution of
Se as a function of (1 – Sp) when n changes. In signal detection theory, Se is
the perceived signal (here the activity) and (1 – Sp) is related to the detected
background “noise” emitted by inactive molecules. The objective here is to an-
swer the question: “Considering available SAR data, how good is the model in dis-
criminating active compounds from inactive ones?”. In other words, the ROC curve
approach provides an answer to one of the key questions in virtual screening.
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Fig. 15.4 Performance assessment with ROC
curves. The theoretical distributions for ac-
tive (red curve) and inactive compounds
(blue) as a function of their fit score on the
pharmacophore (left). In most cases, these
distributions overlap, leading to false predic-
tions (colored areas). Upon threshold modi-
fication, proportions of such erroneous clas-
sifications change dramatically. Hence to any
selection threshold Si corresponds a unique

point Pi (1 – Spi, Sei) on the ROC graph and
vice versa. The relative position of the ROC
curve with respect to the 45� diagonal (ran-
dom fit score distribution) and the ideal plot
(when the distributions do not overlap)
gives an insight into the overall accuracy of
the computer test. Calculating the area un-
der the ROC curve (AUC) is a practical way
to quantify it.



Most pharmacophore screening packages will provide a geometric fit score ac-
cording to the best alignment of each molecule with the pharmacophore query.
This allows one to rank molecules according to their fit scores and to define the
selection as the n best fitting molecules. Figure 15.4 illustrates how to plot a
ROC curve from the distributions of both active and inactive compounds as a
function of the fit score.

Instead of searching for the single point on the graph (Se, Sp) that maximizes
one of the above equations (Box 4), the area under the ROC curve (AUC) objec-
tively characterizes the overall performance of the model by considering all pos-
sible thresholds. No particular statistics or mathematical equations are required.
In addition, the second advantage of the ROC approach is that it lets the user
decide where to set the threshold between the selected compounds (those which
are worth testing further) and the discarded ones (those which are likely to be
inactive). In fact, the selection threshold might evolve according to practical
needs in addition to the progress in the drug discovery process (Fig. 15.5). For
example, early hit finding may favor sensitivity over specificity to allow more
structural variety amongst selected compounds. In contrast, during lead optimi-
zation, scaffold “hopping” is less a priority and a more demanding selection
threshold (favoring specificity) may be chosen (conservative strategy, point S3 in
Fig. 15.5).

A few recommendations regarding the set of molecules to be used to exploit
the ROC approach fully can be given as follows. First, as the objective is to ac-
count for all available SAR data, the more molecules are included, the better
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Fig. 15.5 Decision making from ROC curves. Different selec-
tion thresholds (S1–S3) correspond to different points on the
ROC curve and allow one to tune S according to different
strategies in drug discovery and different stages of R&D.



the analysis is. The aim, however, is to balance both active and inactive popula-
tions in order not to favor one aspect of the analysis over the other (ability to se-
lect active compounds and ability to discard inactive compounds). The second
recommendation if one has to choose the molecules to be considered is to favor
chemical diversity amongst the active molecules and to select the inactive com-
pounds which are more similar to the actives. In this way, the model is truly
challenged for its discriminatory abilities. Finally, a mixture of training set and
test set molecules is preferable since, as highlighted by the Kubinyi paradox
(see Section 15.2.4.3), both sets can account for different SAR aspects.

15.3
A Successful Application: the Ultimate Validation Proof

This section will underline the importance of some of the above-described vali-
dation methods depending on the planned use for the pharmacophore model to
be determined. It will be illustrated by several case studies. Successful applica-
tions are undoubtedly the best way to validate a pharmacophore hypothesis:
they bring a straightforward answer to the practical question: Was the model use-
ful?

Several articles and reviews have reported impressive lists of possible pharma-
cophore model uses to advocate for pharmacophore research [3, 6, 45, 61]. In
fact, there are three main domains of applications to exploit pharmacophore
models:
1. databases mining for active molecules (virtual screening);
2. guiding medicinal/computational chemistry in the design of new ligands;
3. activity prediction.

Depending on the envisaged use, some of the above-described validation meth-
ods are more suitable than others. Of course, any pharmacophore should be
neat and convey SAR properly, but some approaches are more tailored for a par-
ticular application than others. The following three sections will treat each case
in turn to illustrate this point.

15.3.1
Validation of Pharmacophore Models for Virtual Screening

Pharmacophores are known for their speed in database screening, especially
when compared with the “high-throughput docking” approach. Indeed, by de-
sign, a pharmacophore is a more simplistic object than a protein. For example,
no steric hindrance has to be evaluated when a molecule is to be fitted on a
four-feature pharmacophore. Consequently, pharmacophore models are often
used for virtual screening purposes either as they are or as a filter prior to a
more time-consuming docking step. The examples reported below show differ-
ent approaches.
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15.3.1.1 Which Validation Method Should One Insist On?
In addition to reporting SAR data, pharmacophore models used for virtual
screening have to give evidence of their ability to discriminate active from inac-
tive molecules. Indeed, the goal of virtual screening being to enrich a set of
molecules with active molecules, a simple yes/no decision has to be made re-
garding further evaluation of a given molecule. Consequently, the ROC curve
approach is particularly suited to validate the model by measuring the AUC.
Different strategies can be envisaged: if the pharmacophore model is used as a
simple filter prior to a more time-consuming activity prediction (which is be-
lieved to capture finer aspects of the binding), sensitivity is generally favored
over specificity to prevent the loss of active candidates. Conversely, if the phar-
macophore model is the ultimate decision maker, a more specific selection
threshold may be set.

If new scaffolds are to be found, a second important feature of such models
is their completeness. It allows different structural solutions to fulfil the interac-
tion pattern required by the pharmacophore. Accuracy in the activity prediction,
on the other hand, is not paramount.

Example of successful use of a pharmacophore model for virtual screening
(Bhattacharjee et al., 2004)
In this case study, Bhattacharjee et al. have used a 3D-QSAR pharmacophore
model derived with Catalyst-HypoGen to identify potential Plasmodium falcipar-
um cyclin-dependent kinase (Pfmrk) inhibitors [95]. Using a training set of 15
structurally diverse inhibitors with activities spanning the 0.13–1100 �M range,
the best model (two H-bond acceptors, one ring aromatic and one aliphatic hy-
drophobic) exhibited excellent statistical parameters: correlation coefficient
r = 0.9, RMS= 0.8 (log unit) and correlation with a test set of 15 other inhibitors
led to rpred = 0.7. A cost analysis and a structural validation based on ortholog
proteins were also performed to confirm the model further. A virtual screening
campaign performed on their in-house collection (ca. 290000 molecules) al-
lowed the author to retrieve 16 compounds with predicted activities below
52 �M. All 16 molecules were actual Pfmrk inhibitors in vitro with activities be-
low the 100 �M threshold.

Example of use of a pharmacophore model as a filter in a complete virtual
screening workflow (Steindl et al., 2005)
Their purpose being to identify new human rhinovirus coat protein inhibitors,
Steindl et al. recently reported a successful virtual screening workflow with mul-
tiple hierarchical filtering steps [96]. The structure-based pharmacophore model
that they used as the first filter was extracted from a PDB complex and ex-
pressed as a set of Catalyst features coupled with a shape query. Following thor-
ough analysis of different known complexes, the built model was validated for
database mining applications, i.e. according to its selectivity for known inhibi-
tors when compared with the Derwent WDI database. Using the sensitivity/
specificity paradigm, this first filter exhibited Se= 0.5 and Sp= 0.95. Ten com-
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pounds were retrieved from a chemical provider catalogue with this model and
further analyzed via docking (LigandFit), scoring (LigScore2) and finally PCA-
based clustering. The six best performing molecules on the overall protocol
were all active on the viral coat protein in the micromolar range.

Example of a poorly validated model (Sirois et al., 2004)
The emergence of highly infectious agents such as the SARS-associated corona
virus (SARS-CoV) has given rise to urgent research for new anti-infectious.
With the aim of identifying the inhibitors of the SARS-CoV main proteinase,
Sirois et al. exploited the recently published X-ray structure of this putative tar-
get [97]. A structure-based pharmacophore model was built using the software
MOE to allow the screening of an impressive 3.6 million compound database.
Since no SAR data were available, the authors could not carry out any validation
of the proposed model, their hypothesis relying exclusively on the 3D structure
of a unique inhibitor candidate docked in the binding site. Moreover, even
though a list of the 500 best fitting compounds is reported in their paper, no in
vitro assay results were provided. In their defense, the SARS-CoV is a particular-
ly difficult case since a P3 facility is required to manipulate this highly patho-
genic agent. Clones of the viral main proteinase were therefore not easily acces-
sible at the time they submitted their paper.

15.3.2
Validation of Pharmacophore Models to Guide Medicinal
and Computational Chemistry

As we have seen, pharmacophore models are compilations of SAR data. Conse-
quently, they can be used by both medicinal and computational chemists to
guide them in their research.

Assuming that better fits of molecules on the pharmacophore model will im-
prove the activity, chemists can exploit the generated hypothesis for library de-
sign and lead optimization. In this objective, pharmacophore fingerprints facili-
tate similarity calculations (see [72, 73] as examples).

Additionally, computational chemists often use the resulting output alignment
of the molecules as input for 3D-QSAR modeling. As already stated, most field-
based 3D-QSAR approaches (such as CoMFA) need a pre-aligned set of mole-
cules and the pharmacophore method is certainly one of the best ways to obtain
an objective alignment of the compounds. Klabunde et al., for instance, have re-
cently reported the use of a pharmacophore model of human liver glycogen
phosphorylase inhibitors together with 3D information from inhibitor–enzyme
complexes to derive a predictive CoMFA model [98].

Apart from expressing SAR, there is no validation method that is particularly
recommended for this use. Of course, the selectivity of the pharmacophore will
definitely facilitate library design and a possible way to assess it is to screen a da-
tabase of molecules flagged as active and inactive. In this respect, this is rather
similar to the virtual screening usage and the ROC curve approach could be used
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to assess the ability to discriminate between active and inactive compounds. How-
ever, in contrast to this use, the completeness of the model is not an issue here. In
practice, lead optimization is less focused towards scaffold “hopping” than the vir-
tual screening process. Consequently, if the model is tuned for a specific molecu-
lar series (e.g. series enumerated by a combinatorial approach), designing a library
in the same series does not require more complete pharmacophore models.

Example of design of new �1-adrenoceptor antagonists (Betti et al., 2002)
following pharmacophore investigation (Barbaro et al., 2001)
In order to rationalize the design of �1-adrenoceptor antagonists, Barbaro et al.
generated a pharmacophore model for a series of pyridazone derivatives [74]. A
set of 24 molecules with activity values spanning the range 0.21–2396 nM was
used as input for Catalyst-HypoGen. Their best model was validated via cost
analysis (fixed cost, 101; model cost range, 113–133.3; null cost, 155), statistical
parameters for structure–activity relationship (r = 0.92; RMS= 0.89 log of activity;
Fisher randomization test, 95% of significance) and visual inspection of the
mapping of the molecules on the model. In particular, the influence of the
length of a polymethylene chain and the importance of ortho substituents could
be explained by the retained model. Finally, the model was validated by database
mining to assess the performance of the model in retrieving known �1-adreno-
cepter antagonists with different scaffolds and show good concordance with
third-party models of the receptor. Betti et al. then exploited the model to guide
them in the design of a novel series of �1-antagonists [99]. Starting from the
structure of a virtual hit, they managed to synthesize new compounds with re-
markable �1 affinity and selectivity: Ki�1 nM, �1/�2 affinity ratio > 280).

15.3.3
Validation of Pharmacophore Models for Activity Prediction

Activity prediction can be performed on a wide range of targets. In most cases,
the model estimates the affinity for a protein target which is (sometimes hy-
pothetically) linked to the treatment of a particular disease. Some models, how-
ever, have been proposed to predict molecular affinity for protein sites relevant
for pharmacokinetics (e.g. P-glycoproteins), metabolism [cytochromes P450

(CYP)] or toxicology (hERG channel) assessments. Thus, following the trend for
earlier predictions of ADMET properties using in vitro assays on key proteins
[75], in silico techniques can be used to weed out molecules that are likely to ex-
hibit poor ADMET properties [76]. Norinder has recently reviewed this subject
[77] and shown that pharmacophore models are often used for this purpose.

15.3.3.1 Which Validation Method Should One Insist On?
When compared with the first application (virtual screening), pharmacophore
models for activity prediction require more sophisticated models to capture
more subtle effects (e.g. orientation of directional features, different weights to
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account for different contributions of each feature). Akin to other QSAR ap-
proaches, the models are often biased towards one or several particular conge-
neric series, namely those used in the training set. Consequently, although it
may reinforce the confidence one may have in the generated model, perfor-
mances in database mining are less important than accuracy in the activity pre-
dictions. Moreover, one can expect that, like other QSAR methods [78], such
models may perform better on molecules similar to those of the training set.

Example of affinity prediction of 5-HT7 antagonists
(López-Rodríguez et al., 2000 and 2003)
In a short paper published in 2000, López-Rodríguez et al. reported the first
pharmacophoric hypothesis for 5-HT7 antagonists [79]. At that time, 30 com-
pounds of different structures were used to derive Catalyst-HypoGen models.
The best hypothesis was validated first by the goodness of SAR correlation
(measures by r2: 0.921) and then by the synthesis of a series of naphtholactams
and naphthosultams. Only those that fitted the pharmacophore exhibited pKi

values above 6.5. In 2003, a more refined model was reported with a selection
of 38 diverse antagonists with activities spanning five orders of magnitude
[100]. The best model exhibited a poor correlation coefficient (0.74). However,
after the removal of the non-selective ligands, the remaining 24 antagonists al-
lowed a far better model to be obtained, showing excellent validation results:
cost analysis, SAR correlation (r = 0.91 and prediction within 1 log unit of the
experimental pKi). Database screening studies further suggested the synthesis
of 34 new molecules to assess the predictive power of the retained model. Com-
pounds that met the requirements of the pharmacophore were all actives and
SAR modulations could be rationalized with the model. This definitely validated
their model for further research.

Example of CYP heteroactivation prediction with pharmacophore models
(Egnell et al., 2003)
Egnell et al published a series of two papers to report pharmacophore models
capable of predicting CYP2C9 [80] and CYP3A4 [81] heteroactivation. Despite
high structural variability, this group managed to build two suitable models cap-
able of predicting clinical drug interactions. Accounting for structure-heteroacti-
vation of these two isoforms, the retained models showed good internal predic-
tivity and correlation between external test sets and observed in vitro positive co-
operativity.
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15.4
Case Study: a New Pharmacophore Model for mGlu4R Agonists

15.4.1
Metabotropic Glutamate Receptors as Potential Therapeutic Targets

The design of glutamate receptor agonists and antagonists has been the subject
of many drug discovery programs as glutamate plays an essential role in both
physiological and pathological processes in the CNS and its receptors are there-
fore important targets [82–85]. Glutamate (l-Glu) is the major excitatory neuro-
transmitter in the brain. It activates two classes of receptors: the ionotropic glu-
tamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs).
The iGluRs are channel-gated receptors which mediate fast excitatory synaptic
transmission [86] whereas mGluRs are G-protein coupled receptors (GPCRs)
that modulate synaptic transmission [87]. The iGluRs are of three types named
from their selective agonist: N-methyl-d-aspartic acid (NMDA), 2-amino-3-(3-hy-
droxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and kainic acid (KA). Eight
mGluRs were identified and classified in three groups according to their se-
quence similarity, transduction pathway and pharmacological profile. Group I
includes mGlu1 and mGlu5 receptors which activate phospholipase C (PLC)
and group II (mGlu2, mGlu3) and group III (mGlu4, mGlu6, mGlu7 and
mGlu8) receptors inhibit AMP cyclase (AC).

Initial efforts were devoted to NMDA antagonists. As there were no 3D struc-
tures or models of the glutamate binding site available, pharmacophore models
were generated and used for the design of new compounds [88, 89]. However
because of the essential role of iGluR and the difficult fine tuning, all competi-
tive drugs displayed severe side-effects and their development was discontinued.
Interest was then focused on mGluRs, the other class of glutamate receptors.
As mGluRs modulate synaptic transmission, they were expected to be better
drug targets. Indeed, several mGluR agonists/antagonists proved to be success-
ful and one was even taken to advanced phase II clinical assays [84]. Before the
disclosure of homology models [90, 91] and the crystal structure [33] of the
mGluR binding domain, pharmacophore models allowed the glutamate bioac-
tive conformation and agonist selective features to be defined [31, 32]. Today,
new mGluR ligands may be discovered through two complementary ap-
proaches: structure-based virtual screening [53] and ligand-based screening.
Here, we report on the generation of a new pharmacophore model of mGlu4 re-
ceptor and its use in screening for new agonists.

15.4.2
Pharmacology of Metabotropic Glutamate Receptor Subtype 4 (mGlu4)

Known competitive mGlu4 ligands are all glutamate analogs of the linear, cyclic or
phenylglycine type [87]. Agonists that were selected for the “training set” and “ROC
set” to generate and validate the pharmacophore model, are displayed in Fig. 15.6.
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They were chosen so that the largest range of activities is exhibited. Activities
are expressed as the ratio between the agonist EC50 and the glutamate EC50

measured in the same assay as defined previously [32]. l-AP4 and most mGlu4
ligands hold an additional acidic function compared to glutamate that infer
group III selectivity [e.g. l-AP4, l-SOP, ACPT, (S)-4-PPG, (S)-3,4-DCPG]
(Fig. 15.6). The distal acidic groups of agonists were shown to interact with a

15.4 Case Study: a New Pharmacophore Model for mGlu4R Agonists 349

Fig. 15.6 (a) Chemical structure of mGlu4 agonists and other
inactive compounds. Distances d1 and d2 are indicated on the
L-glutamate structure (top left). Linear glutamate analogs are
grouped at the top. The left bottom section displays cyclopen-
tyl derivatives and the bottom right section shows rigid
ligands (above) and phenylglycines (below).



set of lysines and arginines in a homology model of mGlu4 binding domain
[91] (Fig. 15.7 b).

The flexibility of the side-chain of these residues allows their basic function
to interact with the acidic groups of agonists with variable length. In the pre-
vious pharmacophore model, we did not include agonists that hold their distal
acidic groups at longer d1, d2 distances (Fig. 15.6) from the �-amino acid moiety
than glutamate. The reason for this was that we did not know which of the
proximal or distal ionizable functions should be superimposed. It is now estab-
lished that all amino acid mGlu ligands bind that moiety similarly to a common
set of residues [92] (Fig. 15.7 b). Hence it is now possible to include in the mod-
el agonists such as (S)-4-PPG and (S)-3,4-DCPG that are characterized by longer
d1, d2 distances.

With the previous pharmacophore model of mGlu4 receptor, we wished to de-
termine the glutamate bioactive conformation, as the tertiary structure of the
binding site was unknown, and to define selective features in comparison with
mGlu1R and mGlu2R pharmacophore models. With the present model, we also
intended to explain why some closely structurally related ligands bind selectively
to other mGlu subtypes and not to mGlu4. These are found among the selected
inactive compounds (ACPD, APDC, LY354740, CBPG, C3HPG) (Fig. 15.6).
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Fig. 15.6 (b) Activities of the mGlu4 agonists reported with
L-glutamate (L-Glu) as a reference. Molecules used in the
training set for Catalyst-HypoGen are flagged with an “�”.
Those taken to plot the ROC curves are flagged either as
actives (A) and inactives (I).



15.4.3
Training Set Elaboration

In this case study, the training set elaboration is utterly important because the
mGlu4 agonists dataset is amongst the difficult ones (poor activities, inaccurate
EC50 values for the least active compounds, poor structural variability, noticeable
flexibility of the receptor, etc.). We report here how the training set was built to
be used by Catalyst-HypoGen.

For HypoGen, activity values are specified with an uncertainty factor to account
for biological variability. Hence this pharmacophore search engine will consider
activity brackets for each compound instead of a sharp discrete value. This influ-
ences the “constructive phase” during which the pharmacophore space is gener-
ated with the most active compounds. Indeed, the set of “most active” molecules
is defined as the subset of molecules for which the activity bracket overlaps the
activity bracket of most active compound (see the “activity window”, Fig. 15.8).

Although l-AP4 is the most potent agonist, this molecule was discarded from
the training set in order to allow more actives in the construction phase of Hypo-
Gen. Hence l-SOP was the lead compound. Importantly, it shares many pharma-
cophoric configurations with l-AP4, therefore such essential structural informa-
tion was provided to the program. The second most active is (S)-4-PPG, the first
representative of the phenylglycines. This again was done deliberately because Hy-
poGen generates the pharmacophoric space as the intersection of all accessible
pharmacophoric configurations of the two most active compounds. The pharma-
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Fig. 15.7 (a) Homology model of the ligand
binding domain of the mGlu4 receptor. This
domain adopts a bilobate fold (shown as a
ribbon, lobe 1 in white and lobe 2 in magen-
ta) separated by a flexible hinge region (or-
ange strands). The L-glutamate is displayed
in the center in stick mode as it is trapped
by the closure of the domain upon receptor
activation. (b) Interaction pattern obtained
with l-glutamate after docking by molecular

dynamics in a model the mGlu4 receptor
[top view along the black arrow in (a)]. Only
residues that are in the vicinity of the ligand
(center with hydrogens in cyan) are dis-
played. Residues are shown with colored car-
bons either in white (lobe 1) or magenta
(lobe 2). Hydrogen bonds are shown with
dashed green lines and a putatively “struc-
tural” water molecule is represented by a yel-
low sphere.



cophoric space is then reduced to the models that have a minimum of four fea-
tures required to be found in the remaining “most active” compounds.

After the “constructive phase”, the retained pharmacophore models are
screened according to the mapping of the “least active” molecules. A molecule
is taken as “least active” if its activity values differ by more than 3.5 log units
from the activity of the most active compound (here l-SOP). For this particular
dataset, the default value was too large and was therefore reduced to 2.9 to allow
more molecules in the “least active” set. Only pharmacophore models that
roughly discriminate between the most actives and the least actives will survive
to this “subtractive phase”.

15.4.4
Strategy for Perceiving the Pharmacophore

The default Catalyst features were edited to account for some important informa-
tion regarding the interaction pattern exhibited by the best agonists in the orthos-
teric site of the mGlu4 receptor. Directed mutagenesis, resolved complex struc-
tures and homology models revealed the importance of the proximal part of the
binding pocket. Indeed, this area is particularly structured, almost rigid, as many
protruding side-chains are maintained by other residues via H-bonds. One of our
main hypotheses in this search for new agonists is to keep the primary ammo-
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Fig. 15.8 Activity brackets used for our pharmacophore mod-
els. Compounds used in the training set have colored bars:
red and light red for the “most active” set (constructive
phase), yellow for moderately active molecules and cyan for
the “least active” set (subtractive phase).



nium moiety. In fact, 3D models have shown that the three hydrogens of this moi-
ety participate in three different H-bonds with the surrounding residues of the
proximal zone, namely Ala180, Thr182 and Asp312, and consequently three polar
hydrogens are required to satisfy these interactions (Fig. 15.7 b). Moreover, an ion-
ic bridge with Asp312 is observed together with a cation-�-interaction with Tyr230,
making the positive charge of the ammonium moiety a second constraint in the
design of mGluR agonists. Consequently, the Positive Ionizable feature was re-
quired for the output pharmacophore models. Its presence had to be forced other-
wise HypoGen would not have retained it as not being essential to discriminate
between actives and inactives. This is due to our imperfect dataset in which even
the least active molecules exhibit a primary ammonium.

The distal part of the binding site is flexible with residues featuring longer
side-chains (Lys, Arg). It is this relative flexibility that allows molecules such as
phenylglycines to bind in spite of their longer proximal–distal distance. We
therefore edited the default HB Acceptor feature to relax the position of the ac-
ceptor atoms. This was simply done by deleting the foot point of the feature,
therefore retaining only the projected point. Trials with the complete vectorized
feature and with the foot point (location of H-bond acceptor atom, non direc-
tional) were also performed.

The Negative Ionizable feature was augmented to map on N-acylamides
(O=C–NH–C=O) motif such as in Quis (Fig. 15.6 a).

Last, the default minimum feature distance was reduced to 230 pm (2.3 Å)
owing to the relatively small size of the agonists.

15.4.5
Four Criteria to Validate our Pharmacophore Model

Our objective is to build a model to be used for virtual screening of commercial
databases to identify novel mGlu4 receptor agonists.

Our validation criteria to retain output models are defined as follows:

How did we like the generated hypotheses?
1. Knowing the key role of the proximal part of the binding pocket, the hypoth-

eses that aligned the amino acid moieties of the most actives in a similar way
were retained. In particular, small and flexible agonists (such as l-AP4 or l-
Glu), bulky agonists [such as ACPT-I and (+)-ACPT-III] and phenylglycines
[(S)-4-PPG and (S)–3,4-DCPG]) should have similar mappings for their amino
acid moieties. Should some models meet this criterion, they will represent a
clear improvement compared with those previously generated in which phe-
nylglycines could not be taken into account.

How well known SAR was provided and interpreted by the program?
2. Regarding the statistics reporting the SAR data, we were rather lenient since

accurate activity prediction was not our objective. Hence, models exhibiting a
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root mean square error [RMS, see Eq. (3.3)] below 1.5 log activity and a corre-
lation coefficient above 0.8 were accepted.

How do the models comply with external biophysical data?
3. The three-dimensional structure of the ligand-binding domain constitutes ex-

ternal information that can be exploited to bring further credit to the gener-
ated model. In this respect, hypotheses that could be rationalized from the
target structure were favored.

Considering known SAR, how good are the models for virtual screening applications?
4. The final decision was made according to the ROC curves plotted using a re-

presentative set of molecules to evaluate the performance for virtual screening
(measured by the AUC) and to set a selection threshold. Models capable of ex-
hibiting an AUC above 0.85 were retained. In order to be consistent with our
previously reported virtual screening work resorting to a docking-scoring
approach [53], the same set of 21 molecules was used. Figure 15.6 b recalls
them and specifies those which were taken as actives (A) and those consider-
ed as inactives (I).

15.4.6
Results of Our Pharmacophore Model Research with Catalyst-HypoGen
and HypoRefine

Different parameter sets were tested in a first row in order to restrict our phar-
macophore search in a smaller space.

In an initial run, two different H-bond acceptor features (foot point and pro-
jected points; see Section 15.4.4) were selected in order to evaluate which of
these two definitions was retained to build the best models. As expected, the H-
bond acceptor feature defined as a simple projected point constraint was clearly
favored. Even if more complex models allowing variable tolerances and variable
weights were required, the foot point feature was never as good as the projected
point (data not shown). Consequently, the H-bond acceptor feature defined as a
foot point was discarded from further pharmacophore model research.

Table 15.1 reports the validation criteria that are met by the models obtained
with the projected acceptor feature. Following the Occam razor principle imple-
mented in HypoGen’s cost function, we first tried to build simple models. The
standard method uses a simulated annealing algorithm to optimize the retained
models. During this process, features are added, moved or removed and even-
tually changed into a different feature in order to reduce the total cost of a giv-
en model. Unfortunately, the dataset did not allow HypoGen to produce simple
models, the best hypothesis having an RMS of 1.63 (run 1). Consequently, dif-
ferent refinement methods were tested with various combinations: variable tol-
erances allow HypoGen to change the tolerance of the location constraints of
each retained feature; similarly, variable weights allow the program to assign
different weighting coefficients to each feature; Finally, the new Catalyst-HypoR-
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efine algorithm [9] was tested to allow excluded volumes to be added to the
models. With this last method, the “least active” molecules are not used to iden-
tify the most discriminating models but to find candidate locations to place ex-
cluded volumes during the optimization phase.

Interestingly, the generated models have lower costs with the new HypoRe-
fine algorithm than with the standard HypoGen method (data not shown). We
can conclude that Catalyst can better explain the differences in activities be-
tween the molecules of our dataset by resorting to excluded volumes than by
simply using feature mappings. This observation backs up our previous state-
ment regarding high structural similarities between the most active and the
least active compounds of this tricky dataset.

Only a synergetic combination of different refinement methods could produce
a model capable of meeting our four criteria (model 1, run 8; RMS= 0.76,
r = 0.96, AUC = 0.87). Rare are the cases for which Catalyst needs to resort to
such extreme methods to obtain good models. This, again, underlines the diffi-
culties with the mGlu4 dataset.

In addition to this pharmacophore hypothesis, although it met only three of
the four criteria, model 1 from run 6 was retained. Surprisingly, despite criteri-
on number 2 not being satisfied (RMS= 1.62, r = 0.79), this model exhibits a re-
markable ability to discriminate between active and inactive compounds as as-
sessed by the ROC curve, AUC = 0.95. In contrast, model 1 from run 8 has good
statistics (RMS= 0.76, r = 0.96) but a lower AUC of 0.87. This illustrates that a
good model for activity prediction may not be the best for virtual screening ap-
plications. Let us analyze these two pharmacophore hypotheses further.
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Table 15.1 Summary of our pharmacophore search using various refinement methods a).

Run Algorithm Refinement method Model 1 Model 2 Model 3

1 HypoGen Standard � �� ���

2 Var. weights � � �

3 Var. tolerances � � ��

4 Var. tolerances and weights �� Null �

5 HypoRefine Standard � ��� ��

6 Var. weights ��� ��� ��

7 Var. tolerances �� � �

8 Var. tolerances and weights ���� Null �

a) Variable weights and/or tolerances between features (“Var.
weights” and “Var. tolerances” in the table, respectively) and
the new HypoRefine algorithm to add excluded volumes
were tested in various combinations. Cell shading indicates
whether the three (cost-wise) best models meet (gray) or do
not meet (white) criteria numbers � (compound mappings),
� (RMS < 1.5 and correlation coefficient r > 0.8), � (from
target rationalization) and � (ROC curve AUC > 0.85).



15.4.7
Description of the Two Retained Pharmacophore Models

15.4.7.1 Hypothesis 1 (Catalyst-HypoRefine with Variable Weights)
This model includes four projected points of H-bond acceptor features, one pos-
itive ionizable volume (as required) and one excluded volume. Figure 15.9
shows the mappings of three representative agonists: a small and flexible mole-
cule (l-AP4, the most potent agonist known to date), the cyclic glutamate mimic
ACPT-I and a phenylglycine, (S)-4-PPG.

First, the retained bioactive conformation corresponds to the extended confor-
mation that was originally suggested by Jullian, Bessis and co-workers from the
first pharmacophore models of mGlu receptor agonists [31, 32] and the later ob-
served conformation in the resolved l-Glu/mGlu1 receptor complex by Kunishi-
ma et al. [33].

Interestingly, the excluded volume lies in the forbidden area represented by
lobe 1 of the ligand binding domain (EV1, Fig. 15.9). This is in line with the
commonly accepted mechanism of binding, which states that agonists must
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Fig. 15.9 Mapping of three agonists on hy-
pothesis 1 [(a) L-AP4, (b) (S)-4-PPG and (c)
ACPT-I, all top views, and (d) ACPT-I, side
view along the black arrow in (c)]. The green
spheres represent the tolerances surround-
ing projected points of H-bond acceptor

features (Ap1–4) and the green vectors show
which atom of the compound map to each
of those feature; the red sphere locates a
positive ionizable feature (basic group, PI)
and the black volume is the sterically forbid-
den area (excluded volume, EV1).



first bind to the first lobe to allow an equilibrium displacement from an open-
inactive conformation to a closed-activated state of the receptor.

As far as the projected points of H-bond acceptor features are concerned, it is
not reasonable to propose a correspondence with some of the key residues iden-
tified by mutagenesis studies. Indeed, there are no agonists which contain a ri-
gidified structure capable of constraining the proximal and distal acidic moieties
in a specific orientation. In the case of l-AP4 for instance, the acidic functions
(carboxylic and phosphonic) are free to rotate about the C�–CO2H and C�–
PO3H2 bonds, therefore not providing any explicit direction for the acceptor fea-
tures. It is worth noting, however, that the program perceived the importance of
such interactions for the activity.

15.4.7.2 Hypothesis 2 (Catalyst-HypoRefine with Variable Weights and Tolerances)
Similarly to hypothesis 1, this second hypothesis comprises four projected
points of H-bond acceptor features, one positive ionizable, but this time two ex-
cluded volumes were retained during the optimization phase (Fig. 15.10).

It is noticeable that allowing tolerances to vary led HypoRefine to reduce toler-
ance spheres significantly. These more stringent location constraints reduce the
number of alternate mappings, therefore allowing a model with good statistics
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Fig. 15.10 Mapping of three agonists [(a) L-AP4, (b) (S)-4-
PPG, (c) ACPT-I top views and (d) ACPT-I, front view along
black arrow] on hypothesis 2. The color legend is as in
Fig. 15.9.



to be obtained as mentioned above. Once again, the known extended conforma-
tion was chosen for small and flexible agonists such as l-Glu and l-AP4
(Fig. 15.10a). More remarkable is the second forbidden area that is added to hy-
pothesis 2. Whereas a first excluded volume mimics the lobe 1 of the ligand bind-
ing domain, the second clearly overlaps with lobe 2, forcing the compounds to
map in a narrow groove flanked by these two forbidden regions. Knowing that,
by design, excluded volumes are added by Catalyst-HypoRefine to discriminate
compounds with different activities better, it is noteworthy that the program
was capable of perceiving such sterically forbidden zones by reporting solely on
the ligands structures. In fact, it seems that the activation of the receptor depends
on the closing angle of the ligand binding domain. Hence, using mGlu8 receptor
as a model, we studied the mutation of the tyrosine-227 from lobe 2 (conserved in
all subtypes and corresponding to Tyr230 in mGlu4; Fig. 15.7 b) into alanine [93].
The results clearly suggest that this residue participates in the antagonist activity
of �-methyl-AP4, whereas its “nor” derivative (l-AP4; Fig. 15.6 a) is a full agonist:
steric hindrance between the methyl group and the side-chain of Tyr230 might
prevent the receptor from fully closing and reaching the conformation required
for proper activation.

15.4.7.3 Comparison of the Two Retained Hypotheses
Although rather similar in their composition, hypotheses 1 and 2 would prob-
ably show different performances depending on their use. The preliminary sta-
tistics are clearly in favor of hypothesis 2 (see Fig. 15.11, top), making this mod-
el a good candidate for activity prediction. A more thorough validation would be
required if it were to be used for this purpose. In particular, further assessment
with compounds external to the training set would be necessary.

Our goal here is different as it is to identify novel mGlu4 agonists by virtual
screening. Consequently, the ROC curve assessment was the core of the valida-
tion process (Fig. 15.11, bottom). Our evaluation set being rather small (only 21
representative molecules), we first evaluated the odds of obtaining better AUCs
at random. To do that, the observed activity values were scrambled and ran-
domly redistributed to each of the molecules 99 times. The 99 corresponding
ROC curves were then plotted to measure 99 AUCs. Given that none of those
AUC values could exceed the reference AUCs (0.95 for hypothesis 1 and 0.87
for hypothesis 2), Fisher’s test indicates that the statistical significance of our
models reaches 99%.

In a second row, when the AUCs of the two retained pharmacophore models
are compared, hypothesis 1 appears to perform better than hypothesis 2. Not
only is its AUC larger when compared with hypothesis 2, but also its ROC
curve shape is more interesting. Hence, if sensitivity is to be maximized to re-
duce the false negative rate and increase the chances of finding novel leads
(Se= 1), it is possible to increase the specificity to 0.73 with hypothesis 1 (point
S1, Fig. 15.11), whereas the highest possible specificity value for Se= 1 is only
0.36 with hypothesis 2 (point S2, Fig. 15.11). In other words, if we analyze the
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binary classification between active and inactive, only three molecules out of 21
are misclassified with hypothesis 1 (namely 4-methylene-Glu, Quis and homo-
Quis, which are declared as actives). In contrast, hypothesis 2 over-predicts sev-
en compounds out of the 21 (i.e. ca. 63% of the inactives are found amongst
the selected molecules).

In conclusion, hypothesis 1 was selected because it satisfies three of our four
validation criteria and seems particularly appropriate for virtual screening (ROC
curve validation). The selection threshold was set according to point S1

(Fig. 15.11), corresponding to an activity threshold of 24 (i.e. estimated activity
below 24 times the activity of l-Glu).
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Fig. 15.11 Statistical performances (above)
and ROC curves (below) of hypothesis 1
(left) and hypothesis 2 (right). The 17 com-
pounds used for the statistical assessment
are those from the training set whereas the
21 compounds used to plot the ROC curves

were taken from a representative set of ac-
tives and inactive agonists (see Fig. 15.6b
and text). Each straight line shows the ROC
curve of a random classification and can be
used as a reference.



15.4.8
Further Validation: Virtual Screening of the CAP Database

The CAP (Chemicals Available for Purchase) database is a compilation of com-
mercially available compounds from all major vendors. This electronic catalogue
is maintained by Accelrys Inc. in several formats [94] and contains more than
1.6 million unique entries.

The virtual screening of the CAP database using hypothesis 1 as a query was
organized in several rounds. The first round was focused on unprotected �-ami-
no acids of low molecular weight (below 300 g mol–1) because this subset is ex-
pected to contain more hits with possibilities of optimizing them. Some results
of this first virtual screening round are reported in Table 15.2.

An initial screen with hypothesis 1 yielded 251 amino acids of molecular
weight below 300 g mol–1 and among which 156 were predicted to be active on
mGlu4R (estimated activity < 24). A quick visual inspection of these 156 virtual
hits has revealed 28 known and commercially available mGlu4 agonists (e.g. l-
Glu, l-AP4, �-methyl-AP4, �-methyl-AP4, PCCG-4). To our knowledge the 128
remaining hits have not been tested on this receptor. Figure 15.12 reports some
interesting structures.

The phenylboronic derivative 1 is particularly interesting as it might contract
a dative bond with one of the distal lysine residues. This could noticeably re-
duce the koff constant upon binding to mGlu4 and provide a new pharmacologi-
cal tool to study this receptor (especially if the lysine residue involved is in lobe
2, i.e. Lys317). Other series of molecules that we have selected for in vitro tests
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Table 15.2 Virtual screening of the CAP database using successive queries a).

Query Query description Number of
compounds

Maximum
enrichment

0 None 1619612 1
1 Unprotected �-amino acid 788 2 055
2 Query 1 and hypothesis 1 251 6 452
3 Query 2 and estimated activity < 24 156 10382

a) For each step, the number of virtual hits is reported together
with the maximum possible enrichment [enrichment calcu-
lated with Eq. (4.4) in the case where all selected compounds
are active].

Fig. 15.12 Structures of three virtual hits identified with hypothesis 1 in the CAP database.



include �-glutamyl and �-aspartyl derivatives such as 2 and 3. Indeed, many
new chemical derivatives could be envisaged synthetically by simply coupling
primary amines to the distal acidic function of l-Glu or alternatively l-Asp. In vi-
tro assays performed with these virtual hits will be reported elsewhere together
with non-amino acid hits identified from other screening rounds.

15.5
Conclusion

The success of the pharmacophore approach in drug discovery no longer needs
to be demonstrated. This book is an additional testimony to this. Successful
pharmacophore investigations, however, have unavoidably passed a key step
prior to application: validation. What we have tried to show throughout this
chapter is that this critical stage depends on three practical considerations.

First, the available dataset is the foremost limitation on pharmacophore re-
search. Ideally, it should contain compounds of various structures and activities
with evidence that they bind to the same binding site. Potent, feature-poor and
conformationally constrained compounds greatly help in reducing the number
of solutions. In reality, however, rare are the cases that meet all these criteria to-
gether. Nevertheless, this does not mean that pharmacophore research is un-
thinkable for difficult cases.

Second, the approach used to perceive the pharmacophore will add further
limitations. We have discussed the pitfalls of ligand-based and structure-based
pharmacophore models and the different approaches used by automatic phar-
macophore generation programs. Simplifications are inevitable and one cannot
pretend to capture fully the complexity of a biological phenomenon with a set
of 5–6 features. The validation process is therefore focused on showing that, for
a given dataset, the generated model describes some of its important aspects. In
particular, showing that the model explains SAR data is critical.

Third, the validation is often adapted to the final objective in the search for a
pharmacophore. Whether its is to be used as a query for virtual screening, to
predict accurately the activity of a series of molecule or to serve as a guide for
drug design, some validation approaches can be emphasized over others. So, if
the title of this chapter were to be rephrased, we could have asked: Are you sure
you have the right model . . . for the envisaged application?

Last, we have searched for a new pharmacophore model of metabotropic glu-
tamate receptor subtype 4 agonists. The retained hypothesis, generated via the
new Catalyst-HypoRefine algorithm, showed significant advantages over the pre-
viously reported models by including both glutamate-like agonists and phenyl-
glycines. It was validated for virtual screening applications by the ROC curve
method and indexed database screening. Finally, the model was used as a query
approach to search for new mGlu4 receptor agonists amongst a compilation of
chemical vendors’ catalogues. In vitro results of the retained virtual hits will be
reported elsewhere.
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nuclear receptor (NUC) 59
nucleoside transporter 307
null cost 328 f., 346
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o
OATP, see organic anion transporting poly-

peptide
Occam razor principle 327, 354
Ochia coefficient 199
OCT, see organic cation transporter
OpenEye 32
OpenGL 141
OPLS-2005 33
OppA 230
Oracle database 43
organic anion transporting polypeptide

(OATP) 309ff.
– OATP1A2 309f.
– OATP1B1 309ff.
organic cation transporter (OCT) 301ff.
OSPPREYS (oriented substituent pharmaco-

phore property space) 39
oxotremorine 10

p
p38 196, 215 ff.
P450, see cytochrome P450
PABA, see aminobenzoic acid
PAF 92
pairwise comparison 43, 83 ff.
PARP poly(ADP-ribose)polymerase inhibi-

tor 231
partial fit/mapping/match 27ff., 260 ff.
partial least-square (PLS) 34, 109
– coefficient plot 237
– optimal linear PLS estimation 226
PAS (peripheral anionic site), see anionic

site
PATTY 57
Paul Ehrlich 5f., 81, 325
PCA, see principal component analysis
PCH, see polarity-charged-hydrophobicity
PDB (protein data bank) 133, 145 f., 152,

162, 335 ff.
– drug-like PDB ligand 145
PDE III inhibitor 37
PDQ (pharmacophore-derived query) meth-

od 194
Pearson’s correlation coefficient 334
PepT1 (peptide transporter) 301ff.
peptidomimetic 156
Pfmrk (Plasmodium falciparum cyclin-depen-

dent kinase) inhibitor 344
P-glycoprotein (P-gp) 301ff.
– substrate 305
– transport 305
pharmacophore 23

– 3D 39, 49, 65 ff., 194 ff., 286 ff.
– alignment (PA) 125
– alignment-free pharmacophore pat-

tern 50 ff.
– anti-target 285
– chemical feature-based 136, 152, 229,

257
– class I 287 ff.
– class II 287ff.
– constraint 97
– cross-chemotype 287ff.
– definition 24, 132, 325
– DeMarinis 259ff.
– descriptor 193
– fingerprint 38, 193 ff.
– five-point 38
– four-point 195
– four-point pharmacophoric feature 198
– key 195ff.
– matrix 53
– modeling software 17f
– potential pharmacophore point 49 f.
– property 39, 50, 175
– protein-based 175ff., 190, 268
– search 34, 72, 177 ff., 260, 331ff., 351 ff.
– structure-based 131, 151, 269, 329ff.,

344 f., 361
– three-point 194 ff.
– three-point pharmacophoric feature 198
PharmPrint 39
Phase 333
PhDOCK 175
phenylalanine 292
phenylboronic derivative 360
phosphate 8, 166, 213 ff.
phosphodiesterase 10, 314
phospholipase A2 230
phospholipase C (PLC) 348
pIC50 232
piperazine 254ff.
PKA numbering 212
PLS, see partial least-squares
PMapper 17
PMF 196, 218, 231
polarity-charged-hydrophobicity (PCH) 35
poling 23 ff., 257
Ponder-Richards side-chain rotamer li-

brary 118
pose clustering 19
positive ionizable point (PI) 145
post-docking 235
post-filter 175
post-processing 34, 81, 102 ff., 196
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PPAR (peroxisome proliferator-activated re-
ceptor) 59

PPP, see potential pharmacophore point
prazosin 256ff., 289
pre-filter 174, 204
predictive power 347
predictive property 262
PrGen 118, 129
principal component analysis (PCA) 345
principal component (PC) 124, 195
privileged structure 4ff.
probe 19, 36ff., 124, 151 ff., 171 ff., 215,

224 ff., 238, 305ff.
promiscuity 315
protease 59 ff., 110, 230 f., 270
protein binding 4, 82, 146, 171 ff., 208,

224, 329
protein data bank, see PDB
protein kinase 196, 207 ff., 221, 269
– inhibitor 207ff.
protein-ligand interaction 193ff., 224 ff.
– three-dimensional protein-ligand com-

plex 208
PROXIML 133
pseudoreceptor 123ff.
p-SIFt, see SIFt
PXR (pregnane X receptor) 301
pyridazine 4
pyridazinone 254

q
q2 (correlation coefficient) 110, 230, 241,

274 ff., 334 ff., 347 ff.
q2-GRS 231
q2 LOO 229f.
QT
– interval 314
– prolongation 284
– syndrome 284
quadruplet 39
quantitative structure activity relationship

(QSAR) 18, 34 ff., 109, 119, 177, 228ff.,
241, 270, 299 ff., 327 ff., 337

– 3D 18ff., 36, 223 ff., 236 ff., 270, 300 ff.,
327 ff.

– 4D 127, 225
– 5D 127, 225
– equation 177
– model 18, 34ff., 119, 177, 228 ff., 241,

270, 300 ff., 315, 327 ff., 345
quantum mechanical calculation 19, 127
Quasar 121ff.
query feature 25

r
r2 110, 337
r2

pred 270
Raf-1 kinase 233
random selection 58, 92, 119, 202 f., 289 ff.
randomization 23, 259, 334, 346
ranking function 326ff.
RAPID 17
Raptor 121
RECAP 103ff.
receiver operating characteristic (ROC)

curve 23, 341 ff.
receptor 4 ff., 27 ff., 43 f., 49 ff., 117 ff., 131,

156 ff., 193 ff., 210, 225 ff., 253 ff., 283 ff.,
301, 312 ff., 248ff.

– RECEPTOR module 232
– pseudoreceptor 117ff.
receptor surface model 32
recursive algorithm 89, 102
reference library 199
reliability 228ff., 241 ff., 257 ff., 276
Relibase 172
repaglinide 306
resonance form 35
retrospective screening 58 ff., 73 ff.
ribose 213ff.
ring aromatic (RA) 197, 257 ff., 289 ff.,

305, 330, 344
ring perception 134
RMS, see root mean square
RMSD 33, 124 ff., 235
RNA guanine transglycosylase 235
ROC, see receiver operating characteristic
ROCS 32
rofecoxib 72
root mean square (RMS) 20
ROTATE 63

s
salvarsan 5 f.
SAR (structure–activity relationship) 23,

34, 125, 331, 345 ff., 353
SARS-CoV main proteinase 345
SBF, see structure-based focusing
scaffold 168, 203
– hopping 11, 50, 71
– identification 203
– target-based 105
SCAMPI (statistical classification of activ-

ities of molecules for pharmacophore
identification) 40

Schrödinger 32
scientific vector language (SVL) 34
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scoring
– energy 218f.
– energy-based 218
– function 131ff., 171 ff., 195 f., 219, 233
– target-specific 225
SCREEN 17
screening
– performance 338
– pharmacophore-based 193
– workflow 340ff.
SD, see standard deviation
SDEP, see standard deviation of error predic-

tion
SEAL algorithm 227
selectivity 4 ff., 127, 137, 194 ff., 219ff.,

253 ff., 301, 328ff., 344 ff.
– profile 221, 254
semantic analysis 135
sensitivity 338 ff.
sequence alignment 125, 208
shape 223ff., 265 ff., 332 ff.
– descriptor 84
– shape-based filter 203
– shape-based method 32, 283 ff.
side effect 67, 204, 283 ff.
SIFt (structural interaction finger-

print) 208
– p-SIFt 196, 210
– profile-based approach SIFT 210
sildenafil 10
similarity
– 2D 93, 193
– coefficient 38, 196 ff.
– index 58 ff., 176, 226 ff.
– matrix 102
– score 20 ff., 73, 90ff.
– searching 27, 57 ff., 71 ff., 92, 193
simplex method 20
simulated annealing 20 ff., 270, 327, 355
single linkage 91, 109
site-directed mutagenesis 292 ff., 302
Smac protein 156
smart region definition (SRD) proce-

dure 228
SMARTS 33, 55, 138
SMILES 21, 42, 198
sodium taurocholate transporting polypep-

tide (NTCP) 301ff.
Soergel distance 60
solvation 18 ff., 33, 119 ff.
solvent accessible surface (SAS) 122
spacer 259ff.
spacing value 276

specificity 4 ff., 59 ff., 137, 289 f., 301 ff.,
311, 339 ff., 358

– selectivity 301
spherical distance 60
spirochete 5
SQUID (sophisticated quantification of in-

teraction distributions) 72 ff.
SRD technique, see smart region definition

procedure
SRD/FFD 240
SSSR (smallest set of smallest rings) 83,

134
stacking 8, 37, 235 f., 277, 314
standard deviation (SD) 21, 42, 198, 334
standard deviation of error prediction

(SDEP) 229
STAR (self-defining text archive and retrie-

val) 133
statistical measure 333
statistical significance 23, 257 ff., 334 ff.
stereoisomer enumeration 33
stereospecificity 10
steric conflict 268
steric hindrance 269ff., 343, 358
STI-571, see gleevec
stochastic method 23, 35
structure
– 3D 28ff., 223 ff., 328
– diagram (SDG) 111
– information 35, 109, 162, 207 ff.
– structure-activity relationship 283
– structure-based focusing (SBF) 329
substrate 211 f., 302 ff., 329
– specificity 302
substructure 4, 19 ff., 31 ff., 64 ff.
– hopping 71
subtractive phase 31, 352
subtree 85
subtype selectivity 253 ff.
sulphonamide 6
sum of squares 333
superposition 18 ff., 30, 118ff., 223 ff.,

258 ff.
SuperStar 178
SURFACTS 52ff.
SVL, see scientific vector language
SYBYL 24, 335

t
T4 phage lysozyme 338
tacrine 231
tagged feature tree 97
tagged node 98f.
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tamsulosine 10
Tanimoto coefficient 60
Tanimoto similarity 70 f., 188, 196, 211,

292
target protein 3 ff., 81 ff., 190 ff., 203ff.,

223 ff., 242, 253, 268
target-specific scoring method 225
Tat-TAR 75
tautomer enumeration 33
terfenadine 284, 314
test set 95 ff., 120, 242, 259 ff., 270 ff.,

290 ff., 314, 332ff.
TGT, see tRNA guanine transglycosylase
thermolysin 230
THINK 41
Thomson Derwent WDI 337
three-dimensional protein-ligand com-

plex 208
threonine 119ff.
thrombin (THR) 59
TM (transmembrane helix) 292 ff.
– TM1 293f.
– TM2 293f.
– TM3 292ff.
– TM5 292ff.
– TM6 292ff.
– TM7 293f.
tool-tips 141ff.
top 1% 291
top 5% 291f.
TOPAS (topology-assigning system) 67
topographical distance 50
topological analysis 134 f.
topological distance 50 ff.
topomer 97
trade-off 81, 341
training set 37, 95 ff., 119 ff., 177, 227ff.,

254 ff., 274 ff., 292, 307 ff., 334
tree-based partitioning 33
tree-viewer 144
Treweren Consultants 41
triangle 136, 197
triplet 39, 50, 72
– pharmacophore 38
Tripos Tuplet 39
tRNA-guanine transglycosylase

(TGT) 180ff., 335
trypanosome 5
tuplet 39
tweak algorithm 175
TXA2 92
type-B monoamine oxidase 233
Tyr-kinase 106

u
UDP-glucuronyl transferase (UDPGT,

UGT) 300ff.
– UDPGT1A1 304
– UDPGT1A4 304
– UGT1A6 304
– UGT1A9 304
ultimate validation proof 343 ff.
UNITY 25ff., 39, 175 ff.

v
VALIDATE 230
validation 23, 289, 344
van der Waals energy 26, 328
verapamil binding site 305
vertex 53 ff.
virtual compound 9 ff., 93, 193 ff., 207
virtual high-throughput screen (vHTS) 196
virtual library 58, 194 ff., 207
virtual screening (VS) 92, 113, 218, 338 ff.
– false negative (FN) 338
– false positive (FP) 338
– ligand-based 113
– structure-based 42, 171 ff., 190, 340 ff.
– true negative (TN) 338
– true positive (TP) 338
– workflow 218
visual inspection 207, 330, 346, 360
volume similarity 33

w
water molecule 140, 152, 165f., 173 ff.,

185 ff., 235 ff., 326 ff.
WDI (world drug index) 102 ff., 269, 330,

337 ff.

x
XED (extended electron distribution) 37
XedeX 37
XIAP (X-chromosome linked inhibitor of

apoptosis) 156
XML 133
X-ray 6, 19 f., 234, 269ff., 313, 335

y
Yak 124ff.
Yersinia protein tyrosine phosphatase

(YopH) 233
YETI 236
– force field 118, 235
yield of actives 339ff.

z
Z score 211ff.
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