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For Rosalynd

Failures are not something to be avoided. You want them to happen as quickly
as you can so you can make progress rapidly
—Gordon Moore
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PREFACE

In less than a generation we have seen the impressive impact of computer
science on many fields, which has changed not only the ways in which we
communicate in business but also the processes in industry from product
manufacturing to sales and marketing. Computing has had a wide influence
by implementation of predictions based on statistics, mathematics, and risk
assessment algorithms. These predictions or simulations represent a way to
rapidly make decisions, prototype, innovate, and, importantly, learn quickly
from failure. The computer is really just a facilitator using software and a user
interface to lower the threshold of entry for individuals to benefit from
complex fields such as mathematics, statistics, physics, biology, chemistry, and
engineering. Without necessarily having to be an expert in these fields the
user can take advantage of the software for the desired goal whether in the
simulation of a process or for visualization and interpretation of results from
analytical hardware.

Within the pharmaceutical industry we have progressed from the point
where computers in the laboratory were rarely present or used beyond spread-
sheet calculations. Now computers are ubiquitous in pharmaceutical research
and development laboratories, and nearly everyone has at least one used in
some way to aid in his or her role. It should come as no surprise that the
development of hardware and software over the last 30 years has expanded
the scope of computer use to virtually all stages of pharmaceutical research
and development (data analysis, data capture, monitoring and decision
making). Although there are many excellent books published that are focused
on in-depth discussions of computer-aided drug design, bioinformatics, or
other related individual topics, none has addressed this broader utilization of

xi



xii PREFACE

computers in pharmaceutical research and development in as comprehensive
or integrated manner as attempted here. This presents the editor of such a
volume with some decisions of what to include in a book of this nature when
trying to show the broadest applications of computers to pharmaceutical
research and development. It is not possible to exhaustively discuss all com-
puter applications in this area; hence there was an attempt to select topics
that may have a more immediate impact and relevance to improving the
research and development process and that may influence the present and
future generations of scientists. There are attendant historical, regulatory,
and ethical considerations of using computers and software in this industry,
and these should be considered equally alongside their applications. I have
not solicited contributions that address the role of computers in manufactur-
ing, packaging, finance, communication, and administration, areas that are
common to other industries and perhaps represent the content of a future
volume. The book is therefore divided into broad sections, although there are
certainly overlaps as some chapters could be considered to belong in more
than one section.

The intended audience for this book is comprised of students, managers,
scientists, and those responsible for applying computers in any of the areas
related to pharmaceutical research and development. It is my desire that
pharmaceutical executives will also see the wide-ranging benefits of com-
puters as their influence and impact is often not given its due place, probably
because there is always a human interface that presents the computer-
generated output. I hope this book shows the benefits for a more holistic
approach to using computers rather than the frequently observed narrowly
defined vertical areas of applications fragmented on a departmental or func-
tional basis. This book therefore describes the history, present, future applica-
tions, and consequences of computers in pharmaceutical research and
development with many examples of where computers have impacted on
processes or enabled the capture, calculation, or visualization of data that has
ultimately contributed to drugs reaching the market. Readers are encouraged
to see this broader picture of using computers in pharmaceutical research and
development and to consider how they can be further integrated into the
paradigms of the future. The whole is certainly greater than the sum of the
parts.

I hope that readers who have not used computers in their pharmaceutical
research and development roles will also feel inspired by the ideas and results
presented in the chapters and want to learn more, which may result in them
using some if not many of the approaches. It is also my hope that the vision
of this book will be realized by computers being directly associated with the
continued success of the pharmaceutical, biotechnology, and associated
industries, to ultimately speed the delivery of therapeutics to the waiting
patients. I sincerely believe you will enjoy reading and learning about the
broad applications of computers to this industry, as I have done during the
editing process. This is just a beginning of imagining them as a continuum.
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1.1 INTRODUCTION

Today, computers are so ubiquitous in pharmaceutical research and develop-
ment that it may be hard to imagine a time when there were no computers to
assist the medicinal chemist or biologist. A quarter-century ago, the notion
of a computer on the desk of every scientist and company manager was not
even contemplated. Now, computers are absolutely essential for generating,
managing, and transmitting information. The aim of this chapter is to give a
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4 HISTORY OF COMPUTERS IN RESEARCH AND DEVELOPMENT

brief account of the historical development. It is a story of ascendancy and
one that continues to unfold.

Owing to the personal interest and experience of the authors, the emphasis
in this chapter is on using computers for drug discovery. But the use of com-
puters in laboratory instruments and for analysis of experimental and clinical
datais no less important. This chapter is written with young scientists in mind.
We feel it is important that the new investigator have an appreciation of how
the field evolved to its present circumstance, if for no other reason than to
help steer toward a better future for those scientists using or planning to use
computers in the pharmaceutical industry.

Computers began to be deployed at pharmaceutical companies as early as
the 1940s. These early computers were usually for the payroll and for account-
ing, not for science. Pharmaceutical scientists did eventually gain access to
computers, if not in the company itself, then through contractual agreements
with nearby educational institutions or other contractors.

There were several scientific and engineering advances that made possible
a computational approach to what had long been exclusively an experimental
art and science, namely, discovering a molecule with useful therapeutic
potential. One fundamental concept understood by chemists was that chemi-
cal structure is related to molecular properties including biological activity.
Hence if one could predict properties by calculations, one might be able to
predict which structures should be investigated in the laboratory. Another
fundamental, well-established concept was that a drug would exert its bio-
logical activity by binding to and/or inhibiting some biomolecule in the
body. This concept stems from Fischer’s famous lock-and-key hypothesis
(Schlissel-Schloss-Prinzip) [1, 2]. Another advance was the development of
the theory of quantum mechanics in the 1920s [3]. This theory connected
the distribution of electrons in molecules with observable molecular proper-
ties. Pioneering research in the 1950s attacked the problem of linking elec-
tronic structure and biological activity. A good part of this work was collected
in the 1963 book by Bernard and Alberte Pullman of Paris, France, which
fired the imagination of what might be possible with calculations on biomol-
ecules [4]. The earliest papers that attempted to mathematically relate chem-
ical structure and biological activity were published in Scotland all the way
back in the middle of the nineteenth century [5, 6]. This work and a couple
of other papers [7, 8] were forerunners to modern quantitative structure-
activity relationships (QSAR) but were not widely known. In 1964, the role
of molecular descriptors in describing biological activity was reduced to a
simplified mathematical form, and the field of QSAR was propelled toward
its modern visage [9, 10]. (A descriptor is any calculated or experimental
numerical property related to a compound’s chemical structure.) And, of
course, there was the engineering development of computers and all that
entailed. The early computers were designed for military and accounting
applications, but gradually it became apparent that computers would have a
vast number of uses.



COMPUTATIONAL CHEMISTRY: THE BEGINNINGS AT LILLY 5

One of us (MMM) was one of the first people in the pharmaceutical
industry to perceive that computer-aided drug design was something that
might be practical and worthy of investigation. He pioneered a sustained,
industrial research program to use computers in drug design. After retiring
from Eli Lilly and Company in 1986, he became a Visiting Research Scientist
and later an Adjunct Professor in the Department of Chemistry, Indiana
University, Bloomington. Section 1.2 is his personal account of the early
steps at Lilly.

1.2 COMPUTATIONAL CHEMISTRY: THE BEGINNINGS
AT LILLY

This narrative was first presented at Don Boyd’s third annual Central Indiana
Computational Chemistry Christmas Luncheon (CICCCL-3) on December
18, 1997. Although it is specific for Eli Lilly and Company, the progress and
problems that transpired there were probably not too different from develop-
ments at other large, forward-looking, research-based pharmaceutical
companies.

This little story contains mainly my personal recollection about how the com-
putational chemistry project in the Lilly Research Laboratories began. An
advantage of living longer than one’s contemporaries is that there is no one
around among the early participants to contradict my reminiscences. A more
comprehensive history of this discipline may be found in the Bolcer and
Hermann chapter in Reviews of Computational Chemistry [11]. T shall confine
this commentary to what I remember about my own involvement.

I began work at Eli Lilly and Company in March 1942 as a laboratory aide in
the analytical department. At that time, there was very little sophisticated
instrumentation in the laboratory. The most complex calculations were carried
out using a slide rule. After military service in World War II and an educational
leave of absence to complete my undergraduate studies in chemistry at Indiana
University, I returned to the Lilly analytical group in 1947. Slide rules were still
much in evidence but were soon augmented with mechanical calculators—
usually Monroe or Friden models.

It was not until 1949 that the company actually acquired a stored-program
computer; at that time an IBM 704 system was purchased—for about $1 million.
In spite of the fact that it was a vacuum tube machine—with considerable con-
comitant downtime—several business operations were carried out using it. A
number of inventories and the payroll were successfully handled. However, no
scientific calculations were performed with it. The system was replaced in a few
years with an IBM 709—again only for business and financial operations.

In the late 1950s or early 1960s, the first computers to have stored programs of
scientific interest were acquired. One of these was an IBM 650; it had a rotating
magnetic drum memory consisting of 2000 accessible registers. The programs,
the data input, and the output were all in the form of IBM punched cards. A
major concern was keeping those card decks intact and in order as they were
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moved about from user to machine and back. My recollection is that some sta-
tistical calculations by Lilly’s research statistics group under Dr. Edgar King
were carried out on this machine.

At about the same time, one of the business groups obtained an IBM 610 com-
puter. This device was simpler to use than the 650, and it utilized punched paper
tape input, program, and output. The tape was generated on a typewriter. Pro-
grams were developed using an essentially algebraic language peculiar to the
machine. After the program tape was read in, a tape containing sequentially
the data to be processed was fed in. The output tape was carried back to a tape
reader linked to a typewriter where the results were ultimately typed out. I used
this machine.

My interest at that time revolved around evaluating optical rotary dispersion
data [12]. The paired values of optical rotation vs. wavelength were used to fit
a function called the Drude equation (later modified to the Moffitt equation
for William Moffitt [Harvard University] who developed the theory) [13]. The
coefficients of the evaluated equation were shown to be related to a significant
ultraviolet absorption band of a protein and to the amount of alpha-helix con-
formation existing in the solution of it.

Interest in possible applications of computers at the Lilly Research Laboratories
began to broaden in the early 1960s. Dr. King (then director of the statistical
research group) and I appeared before the Lilly board of directors, submitting a
proposal to acquire a computer and ancillary equipment to be devoted primarily
to research needs. The estimated cost was a little more than $250,000. In those
days, an expenditure of that large an amount required board approval. Today, I
suppose a division director or even a department head could sign off on a personal
computer with vastly more power than any computer of the 1960s!

The board of directors approved our proposal. The system that was purchased
was an IBM 1620 with the necessary card punches and reader plus tape drives.
In addition to statistical and some analytical chemistry applications, Dr. Charles
Rice (then head of the radiochemistry group) and I initiated Lilly’s first com-
puter-based information retrieval system. Through an agreement with the Insti-
tute for Scientific Information (ISI, Philadelphia), Lilly was able to receive
magnetic tapes containing computer-searchable title information on current
scientific journals from ISI every 10 days. Interest profiles of individual Lilly
scientists were then used to generate the famous (or infamous!) “hit” cards that
were distributed to members of the research staff. The cards contained journal
citations to articles matching the recipient scientist’s profile. This service con-
tinued until the advent of electronic literature alerts in the 1980s.

Stemming from my growing interest in and enthusiasm for the potential use of
computed values of atomic and molecular properties in pharmaceutical research,
I was able to gain approval for a requisition for a scientist who knew how to use
computers to determine molecular properties. The person I hired was Dr. Robert
B. Hermann, our first theoretical chemist. It was 1964. He obtained his Ph.D.
with Prof. Norman L. Allinger at Wayne State and then did postdoctoral research
with Prof. Joseph O. Hirschfelder at Wisconsin and with Prof. Peter Lykos at
the Illinois Institute of Technology. When Bob joined us, he brought along a
semiempirical molecular orbital program that he had personally written. He
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planned to use this to estimate molecular properties of drug-type molecules, but
Lilly computers were incapable of handling the necessary matrix multiplication
steps. This obstacle was overcome by going outside the company. We were able
to develop a working agreement with the engineering component of Allison
Transmission Division of General Motors to use their IBM 7094 after regular
working hours. Since the system was used only by Allison and Lilly, data security
was not an issue. However, considerable time was spent transporting punched
card decks and printouts between the Lilly Research Laboratories near down-
town Indianapolis and the Allison facility in nearby Speedway, Indiana.

Looking back, it is difficult for me to pinpoint the factors leading to my initia-
tion of the molecular modeling and drug design effort at Lilly. Certainly, the
developments of Prof. Lou Allinger and his associates (at Wayne State and the
University of Georgia) in the 1960s to use calculations to study conformation
played an important part [14]. Similarly, the publishing of an EHT program by
Prof. Roald Hoffmann (Harvard University) in 1963 was a significant impetus.
The introduction of the pi-sigma correlation equation by Prof. Corwin Hansch
(Pomona College) in 1964 added another facet of interest. Also that year, Dr.
Margaret Dayhoff (a theoretical chemist who became the first prominent
woman in what would become the field of bioinformatics and who was at the
National Biomedical Research Foundation in Maryland) published a method
for arriving at the geometry of a polypeptide or protein via internal coordinates
[15]. This methodology also encouraged me to begin thinking about enzyme-
inhibitor interactions and the three-dimensional requirements for molecular
design.

It was not until 1968, when Don Boyd joined us as the second theoretical
chemist in our group, that the computers at Lilly started to reach a level of size,
speed, and sophistication to be able to handle some of the computational
requirements of our various evaluation and design efforts. Don brought with
him Hoffmann’s EHT program from Harvard and Cornell. Due to the length
of our calculations and due to the other demands on the computer, the best we
could obtain was a one-day turnaround.

The preceding years involved not only the Allison agreement (for which we paid
amodest fee) but also later ones with Purdue University (West Lafayette, Indiana)
and Indiana University, Bloomington computing centers. These latter arrange-
ments involved Control Data Corporation (CDC) systems that were much faster
than the IBM 7094. Use of the Purdue computer, which continued after Don
joined our group, involved driving to the near north side of Indianapolis where
the Purdue extension campus was located. In the basement of their science build-
ing was a computer center connected to the CDC 7600 in West Lafayette. Com-
puter card decks of data and the associated program for approximate molecular
orbital calculations could be left with the machine operators. With luck, the card
decks and computer printouts could be retrieved the next day. Security was more
of a problem with the academic facilities because they had a large number of
users. The concern was enhanced when—on one occasion—I received, in addi-
tion to my own output, the weather forecast data and analysis for the city of
Kokomo, Indiana! Even though it was unlikely that anyone could make use of our
information except Bob, Don, or myself, it was a relief to research management
when we were able to carry out all our computations in-house.
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These reminiscences cover about the first 15 years of the Lilly computational
chemistry effort. Considering the strong tradition of lead generation emanating
from the organic chemistry group, the idea that molecular modeling could make
a significant contribution to drug design was slow to be accepted. Nevertheless,
enough research management support was found to spark the small pioneering
project and to keep it going in the face of strong skepticism. Regrettably, a
considerable amount of my time in this critical period was spent attempting to
convince management and the scientific research staff of the logic and signifi-
cance of these studies. Because we entered the field at a very early stage, a great
deal of effort went into the testing, evaluation, and establishment of the limits
of application of the various computational methods. This kind of groundwork
was not always well understood by the critics of our approach.

In what follows, we review events, trends, hurdles, successes, people, hard-
ware, and software. We attempt to paint a picture of happenings as histori-
cally correct as possible but, inevitably, colored by our own experiences and
memories. The time line is broken down by decade from the 1960s through
the turn of the century. We conclude with some commentary on where the
field is headed and lessons learned. For some of the topics mentioned, we
could cite hundreds of books [16] and thousands of articles. We hope that
the reader will tolerate us citing only a few examples. We apologize to our
European and Japanese colleagues for being less familiar with events at their
companies than with events in the United States. Before we start, we also
apologize sincerely to all the many brilliant scientists who made landmark
contributions that we cannot cover in a single chapter.

1.3 GERMINATION: THE 1960s

We can state confidently that in 1960 essentially 100% of the computational
chemists were in academia, not industry. Of course, back then they were not
called computational chemists, a term not yet invented. They were called
theoretical chemists or quantum chemists. The students coming from those
academic laboratories constituted the main pool of candidates that industry
could hire for their initial ventures into using computers for drug discovery.
Another pool of chemists educated using computers were X-ray crystallogra-
phers. Some of these young theoreticians and crystallographers were inter-
ested in helping solve human health challenges and steered their careers
toward pharmaceutical work.

Although a marvel at the time, the workplace of the 1960s looks archaic
in hindsight. Computers generally resided in computer centers, where a small
army of administrators, engineers, programming consultants, and support
people would tend the mainframe computers then in use. The computers were
kept in locked, air-conditioned rooms inaccessible to ordinary users. One of
the largest computers then in use by theoretical chemists and crystallogra-
phers was the IBM 7094. Support staff operated the tape readers, card readers,
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and printers. The users’ room at the computer centers echoed with the clunk-
clunk-clunk of card punches that encoded data as little rectangular holes in
the so-called IBM cards [see reference 11]. The cards were manufactured in
different colors so that users could conveniently differentiate their many card
decks. As a by-product, the card punches produced piles of colorful rectan-
gular confetti. There were no Delete or Backspace keys; if any mistake was
made in keying in data, the user would need to begin again with a fresh blank
card. The abundance of cards and card boxes in the users’ room scented the
air with a characteristic paper smell. Programs were written in FORTRAN
I1. Programs used by the chemists usually ranged from half a box to several
boxes long. Carrying several boxes of cards to the computer center was good
for physical fitness. If a box was dropped or if a card reader mangled some
of the cards, the tedious task of restoring the deck and replacing the torn
cards ensued. Input decks were generally smaller—consisting of tens of
cards—and were sandwiched between JCL (job control language for IBM
machines) cards and bound by rubber bands. Computer output usually came
in the form of ubiquitous pale green and white striped paper (measuring 11
by 14-7/8 inches per page). Special cardboard covers and long nylon needles
were used to hold and organize stacks of printouts.

Mathematical algorithms for common operations such as matrix diagonal-
ization had been written and could be inserted as a subroutine in a larger
molecular orbital program, for instance. Programs for chemistry were gener-
ally developed by academic groups, with the graduate students doing most or
all of the programming. Partly, this was standard practice because the profes-
sors at different universities were in competition with each other and wanted
a better program than their competitors had access to. (Better means running
faster, handling larger matrices, and doing more.) Partly, this situation was
standard practice so that the graduate students would learn by doing. Obvi-
ously, this situation led to much duplication of effort: the proverbial reinvent-
ing the wheel. To improve this situation, Prof. Harrison Shull and colleagues
at Indiana University, Bloomington, conceived and sold the concept of having
an international repository of software that could be shared. Thus was born
in 1962 the Quantum Chemistry Program Exchange (QCPE). Competitive
scientists were initially slow to give away programs they worked so hard to
write, but gradually the depositions to QCPE increased. We do not have room
here to give a full recounting of the history of QCPE [17], but suffice it to say
that QCPE proved instrumental in advancing the field of computational
chemistry including that at pharmaceutical companies. Back in the 1960s and
1970s, there were no software companies catering to the computational chem-
istry market, so QCPE was the main resource for the entire community. As
the name implies, QCPE was initially used for exchanging subroutines and
programs for ab initio and approximate electronic structure calculations. But
QCPE evolved to encompass programs for molecular mechanics and a wide
range of calculations on molecules. The quarterly QCPE Newsletter (later
renamed the QCPE Bulletin), which was edited by Mr. Richard W. Counts,
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was for a long time the main vehicle for computational chemists to announce
programs and other news of interest. QCPE membership included industrial
computational chemists.

Finally in regard to software, we note one program that came from the
realm of crystallography. That program was ORTEP (Oak Ridge Thermal
Ellipsoid Program), which was the first widely used program for (noninterac-
tive) molecular graphics [18]. Output from the program was inked onto long
scrolls of paper run through expensive, flat-bed printers. The ball-and-stick
ORTEP drawings were fine for publication, but routine laboratory work was
easier with graph paper, ruler, protractor, and pencil to plot the Cartesian
coordinates of a molecule the chemist wanted to study. Such handmade draw-
ings quantitated molecular geometry. Experimental bond lengths and bond
angles were found in a British compilation [19].

Also to help the chemist think about molecular shape, hand-held molecu-
lar models were widely used by experimentalists and theoreticians alike.
There were two main types. One was analogous to stick representations in
which metal or plastic rods represented bonds between atoms, which were
balls or joints that held the rods at specific angles. Metal wire Drieding
models were among the most accurate and expensive. The other type was
space filling. The expensive CPK (Corey—Pauling—Koltun) models [20, 21]
consisted of three-dimensional spherical segments made of plastic that were
color-coded by element (white for hydrogen, blue for nitrogen, red for oxygen,
etc.). From this convention, came the color molecular graphics we are familiar
with today.

In the 1960s, drug discovery was by trial and error. Interesting compounds
flowed from two main sources in that period. The smaller pipeline was natural
products, such as soil microbes that produced biologically active components
or plants with medicinal properties. The dominant pipeline, however, was
classic medicinal chemistry. A lead compound would be discovered by bio-
logical screening or by reading the patent and scientific literature published
by competitors at other pharmaceutical companies. From the lead, the medic-
inal chemists would use their ingenuity, creativity, and synthetic expertise to
construct new compounds. These compounds would be tested by the appro-
priate in-house pharmacologists, microbiologists, and so forth. Besides the
intended biological target, the compounds would often be submitted to a
battery of other bioactivity screens being run at the company so that leads for
other drug targets could be discovered. The most potent compounds found
would become the basis for another round of analog design and synthesis.
Thus would evolve in countless iterations a structure-activity relationship
(SAR), which in summary would consist of a table of compounds and their
activities. In fortuitous circumstances, one of the medicinal chemists would
make a compound with sufficient potency that a project team consisting of
scientists from drug discovery and drug development would be assembled to
oversee further experiments on the compound to learn whether it had the
appropriate characteristics to become a pharmaceutical product. The formula
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for career success was simple: The medicinal chemist who invented or could
claim authorship of a project team compound would receive kudos from
management.

What happens when a theoretical chemist is thrown into this milieu? Well,
initially not much because the only theoretical methods of the 1960s that
could treat drug-sized (200-500 Da) molecules were inaccurate and limited.
These molecular orbital methods were extended Hiickel theory [22, 23] and
soon thereafter CNDO/2 (complete-neglect-of-differential-overlap/second
parameterization) [24, 25]. Although approximate by today’s standards
and incapable of giving accurate, energy-minimized (“optimized”), three-
dimensional molecular geometries (bond lengths, bond angles, and torsional
angles), they were far more appropriate for use than other methods available
at the time. One of these other methods was Hartree—Fock [26-29] (also
called self-consistent field or nonempirical in the early literature, or ab initio
in recent decades). Although Hartree—Fock did fairly well at predicting
molecular geometries, the computers of the era limited treatment to mole-
cules not much larger than ethane. Another class of methods such as simple
Hiickel theory [30-32] and Pariser—Parr—Pople (PPP) theory [33] could treat
large molecules but only pi electrons. Hence, they were formally limited to
planar molecules, but not many pharmaceuticals are planar.

In addition to the quantum chemistry in use in the 1960s, an independent
approach was QSAR, as already alluded to. Here the activity of a compound
is assumed to be a linear (or quadratic or higher) function of certain molecu-
lar descriptors. One of the commonly used descriptors was the contribution
of an atom or a functional group to the lipophilicity of a molecule; this
descriptor was designated pi (m). Other famous descriptors included the
Hammett sigma (o) values for aromatic systems and the Taft sigma (c*)
values for aliphatic systems; both came from physical organic chemistry [34-
36]. The sigma values measured the tendency of a substituent to withdraw or
donate electron density in relation to the rest of the molecule.

Abbott, Schering-Plough, and Upjohn were among the first companies, besides
Lilly, to venture into the area of using computers for attempts at drug discovery.
Dow Chemical, which had pharmaceutical interests, also initiated an early effort.
Generally, the first steps consisted of either hiring a person with theoretical and
computer expertise or allowing one of the company’s existing research scientists
to turn attention to learning about this new methodology. Much effort was
expended by these early pioneers in learning the scope of applicability of the
available methods. Attempts to actually design a drug were neither numerous nor
particularly successful. This generalization does not imply that there were no
successes. There were a few successes in finding correlations and in better under-
standing what was responsible for biological activity at the molecular level. For
example, early work at Lilly revealed the glimmer of a relationship between the
calculated electronic structure of the beta-lactam ring of cephalosporins and
antibacterial activity. The work was performed in the 1960s but was not published
until 1973 [37] because of delays by cautious research management and patent
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attorneys at the company. (The relationship was elaborated in subsequent years
[38, 39], but no new pharmaceutical product resulted [40].)

1.4 GAINING A FOOTHOLD: THE 1970s

Some of the companies that first got into this game dropped out after a few
years (but returned later), either for lack of management support or because
the technology was not intellectually satisfying to the scientist involved. Other
companies, like Lilly, persisted. Lilly’s pioneering effort paid off in establish-
ing a base of expertise. Also, quite a few papers were published, almost like
in an academic setting. In hindsight, however, Lilly may have gotten in the
field too early because the initial efforts were so limited by the science, hard-
ware, and software. First impressions can be lasting. Lilly management of the
1970s thwarted further permanent growth but at least sustained the effort. (It
was not until near the end of the 1980s that Lilly resumed growing its com-
putational chemistry group to catch up to the other large pharmaceutical
companies.) It was generally recognized that Lilly was a family-oriented
company committed to doing what was right in all phases of its business.
There was great mutual loyalty between the company and the employees.
Other companies such as Merck and Smith Kline and French (using the old
name) entered the field a few years later. Unlike Lilly, they hired chemists
trained in organic chemistry and computers and with a pedigree traceable
back to Prof. E. J. Corey at Harvard and his attempts at computer-aided syn-
thesis planning [41-43].

Regarding hardware of the 1970s, pharmaceutical companies invested
money from the sale of their products to buy better and better mainframes.
Widely used models included members of the IBM 360 and 370 series. Placing
these more powerful machines in-house made it easier and more secure to
submit jobs and retrieve output. But output was still in the form of long print-
outs. Input had advanced to the point where punch cards were no longer
needed. So-called dumb terminals, that is, terminals with no local processing
capability, could be used to set up input jobs for batch running. For instance,
at Lilly an IBM 3278 and a Decwriter II (connected to a DEC-10 computer)
were used by the computational chemistry group. The statistics program
MINITAB was one of the programs that ran on the interactive Digital Equip-
ment Corporation machine. Card punches were not yet totally obsolete, but
received less and less use. The appearance of a typical office for computa-
tional chemistry is shown in Figure 1.1.

The spread of technology at pharmaceutical companies also meant that
secretaries were given word processors (such as the Wang machines) to use
in addition to typewriters, which were still needed for filling out forms. Key-
boarding was the domain of the secretaries, the data entry technicians, and
the computational chemists. Only a few managers and scientists would type
their own memos and articles.
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Figure 1.1 Offices used by computational chemists were filled with stacks of print-
outs and banks of file cabinets with legacy card decks. This photograph was taken in
1982, but the appearance of the environs had not changed much since the
mid-1970s.

Software wasstill written primarilyin FORTR AN,nowmainly FORTRAN
IV. The holdings of QCPE expanded. Among the important acquisitions was
Gaussian 70, an ab initio program written by Prof. John A. Pople’s group at
Carnegie-Mellon University. Pople made the program available in 1973. (He
later submitted Gaussian 76 and Gaussian 80 to QCPE, but they were with-
drawn when the Gaussian program was commercialized by Pople in 1987.)
Nevertheless, ab initio calculations, despite all the élan associated with them,
were still not very practical or helpful for pharmaceutically interesting mole-
cules. Semiempirical molecular orbital methods (EHT, CNDO/2, MINDO/3)
were the mainstays of quantum chemical applications (MINDO/3 [44] was
Prof. Michael J. S. Dewar’s third refinement of a modified intermediate
neglect-of-differential-overlap method).

The prominent position of quantum mechanics led a coterie of academic
theoreticians to think that their approach could solve research problems
facing the pharmaceutical industry. These theoreticians, who met annually in
Europe and on Sanibel Island in Florida, invented the new subfields of
quantum biology [45] and quantum pharmacology [46]. These names may
seem curious to the uninitiated. They were not meant to imply that some
observable aspect of biology or pharmacology stems from the wave-particle
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duality seen in the physics of electrons. Rather, the names conveyed to cogno-
scenti that they were applying their trusty old quantum mechanical methods
to compounds discussed by biologists and pharmacologists [47]. However,
doing a calculation on a system of pharmacological interest is not the same
as designing a drug. For instance, calculating the molecular orbitals of sero-
tonin is a far cry from designing a new serotonin reuptake inhibitor that could
become a pharmaceutical product.

Nonetheless, something even more useful came on the software scene in
the 1970s. This was Prof. N. L. Allinger’s MMI/MMPI program [48, 49] for
molecular mechanics. Classic methods for calculating conformational ener-
gies date to the 1940s and early 1960s [50, 51]. Copies of Allinger’s program
could be purchased at a nominal fee from QCPE. Molecular mechanics has
the advantage of being much faster than quantum mechanics and capable of
generating common organic chemical structures approaching “chemical accu-
racy” (bond lengths correctly predicted to within about 0.01 A). Because of
the empirical manner in which force fields were derived, molecular mechanics
was an anathema to the quantum purists, never mind that Allinger himself
used quantum chemistry, too. Molecular mechanics became an important
technique in the armamentarium of industrial researchers. Meanwhile, a
surprising number of academic theoreticians were slow to notice that the
science was transitioning from quantum chemistry to multifaceted computa-
tional chemistry [52, 53].

Computational chemists in the pharmaceutical industry also expanded
from their academic upbringing by acquiring an interest in force field
methods, QSAR, and statistics. Computational chemists with responsibility
to work on pharmaceuticals came to appreciate the fact that it was too limit-
ing to confine one’s work to just one approach to a problem. To solve
research problems in industry, one had to use the best available technique,
and this did not mean going to a larger basis set or a higher level of quantum
mechanical theory. It meant using molecular mechanics or QSAR or
whatever.

Unfortunately, the tension between the computational chemists and the
medicinal chemists at pharmaceutical companies did not ease in the 1970s.
Medicinal chemists were at the top of the pecking order in corporate research
laboratories. This was an industry-wide problem revealed in conversations at
scientific meetings where computational chemists from industry (there were
not many) could informally exchange their experiences and challenges.
(Readers should not get the impression that the tension between theoreticians
and experimentalists existed solely in the business world. It also existed in
academic chemistry departments.)

The situation was that as medicinal chemists pursued an SAR, calculations
by the computational chemists might suggest a structure worthy of synthesis.
Maybe the design had the potential of being more active. But the computa-
tional chemist was totally dependent on the medicinal chemist to test the
hypothesis. Suddenly, the medicinal chemist saw himself going from being the
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wellspring of design ideas to being a technician who was implementing
someone else’s idea. Although never intended as a threat to the prestige and
hegemony of the organic chemistry hierarchy, proposals from outside that
hierarchy were often perceived as such.

Another problem was that on a computer it was easy to change a carbon
to a nitrogen or any other element. It was easy to attach a substituent at any
position in whatever stereochemistry seemed best for enhancing activity. It
was easy to change a six-member ring to a five-member ring or vice versa.
Such computer designs were frequently beyond the possibilities of synthetic
organic chemistry, or at least beyond the fast-paced chemistry practiced in
industry. This situation contributed to the disconnect between the computa-
tional chemists and medicinal chemists. What good is a computer design if
the molecule is impossible to make?

If the computational chemist needed a less active compound synthesized
to establish a computational hypothesis, such as for a pharmacophore, that
was totally out of the question. No self-respecting medicinal chemist would
want to admit to his management that he purposely spent valuable time
making a less active compound. Thus the 1970s remained a period when the
relationship between computational chemists and medicinal chemists was still
being worked out. Management people, who generally rose from the ranks of
medicinal chemists, were often unable to perceive a system for effective use
of the input computational approaches might provide. In addition, many
managers were not yet convinced that the computational input was worth
anything.

The computational chemists at Lilly tackled this problem of a collaboration
gap in several ways. One was to keep the communication channels open and
constantly explain what was being done, what might be doable, and what was
beyond the capabilities of the then-current state of the art. For organic chem-
ists who had never used a computer, it was necessary to gently dispel the
notion that one could push a button on a large box with blinking lights and
the chemical structure of the next $200 million drug would tumble into the
output tray of the machine. (Back in those days, $200 million in annual sales
was equivalent to a blockbuster drug.) The limited capability to predict
molecular properties accurately was stressed by the computational chemists.
Moreover, it was up to the human, not the machine, to use chemical intuition
to capitalize on relationships found between calculated physical properties
and sought-after biological activities. Also, it was important for the compu-
tational chemist to avoid theory and technical jargon when talking with
medicinal chemists. The computational chemists, to the best of their ability,
had to speak the language of the organic chemists, not vice versa.

In an outreach to the medicinal chemists at Lilly, a one-week workshop
was created and taught in the research building where the organic chemists
were located. (The computational chemists were initially assigned office space
with the analytical chemists and later with the biologists.) The workshop
covered the basic and practical aspects of performing calculations on
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molecules. The input requirements (which included the format of the data
fields on the punch cards) were taught for several programs. One program
was used to generate Cartesian atomic coordinates. Output from that program
was then used as input for the molecular orbital and molecular mechanics
programs. Several of the adventurous young Ph.D. organic chemists took the
course. The outreach was successful in that it empowered a few medicinal
chemists to do their own calculations for testing molecular design ideas. It
was a foot in the door. These young medicinal chemists could set an example
for the older ones. An analogous strategy was used at some other pharma-
ceutical companies. For instance, Merck conducted a workshop on synthesis
planning for their chemists [54].

Despite these efforts, medicinal chemists were slow to accept what com-
puters were able to provide. Medicinal chemists would bring a research
problem to the computational chemists, sometimes out of curiosity about what
computing could provide, sometimes as a last resort after a question was
irresolvable by any other approach. The question might range from explaining
why adding a certain substituent unexpectedly decreased activity in a series
of compounds to finding a QSAR for a small set of compounds. If the subse-
quent calculations were unable to provide a satisfactory answer, there was a
tendency among some medicinal chemists to dismiss the whole field. This
facet of human nature of scientifically educated people was difficult to fathom.
A perspective that was promoted by one of us (DBB) to his colleagues was
that computers should be viewed as just another piece of research apparatus.
Experiments could be done on a computer just like experiments could be run
on a spectrometer or in an autoclave. Sometimes the instrument would give
the results the scientist was looking for; other times, the computational exper-
iment would fail. Not every experiment—at the bench or in the computer—
works every time. If a reaction failed, a medicinal chemist would not dismiss
all of synthetic chemistry. Instead, another synthetic route would be attempted.
However, the same patience did not seem to extend to computational
experiments.

Finally, in regard to the collaboration gap, the importance of a knowledge-
able (and wise) mentor—an advocate—cannot be overstated. For a nascent
effort to take root in a business setting, the younger scientist(s) had to be
shielded from excessive critiquing by higher management and powerful
medicinal chemists.

The computational chemists were able to form collaborations with their
fellow physical chemists. Some of the research questions dealt with molecu-
lar conformation and spectroscopy. The 1970s were full of small successes
such as finding correlations between calculated and experimental properties.
Some of these correlations were published. Even something so grand as the
de novo design of a pharmaceutical was attempted but was somewhat beyond
reach.

Two new computer-based resources were launched in the 1970s. One was
the Cambridge Structural Database (CSD) [55], and the other was the Protein
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Data Bank (PDB) [56]. Computational chemists recognized that these com-
pilations of 3D molecular structures would prove very useful, especially as
more pharmaceutically relevant compounds were deposited. The CSD was
supported by subscribers, including pharmaceutical companies. On the other
hand, the PDB was supported by American taxpayers.

We have not discussed QSAR very much, but one influential book of the
1970s can be mentioned [57]. Dr. Yvonne Martin began her scientific career
as an experimentalist in a pharmaceutical laboratory, but after becoming
interested in the potential of QSAR she spent time learning the techniques
at the side of Prof. Corwin Hansch and also Prof. Al Leo of Pomona College
in California. As mentioned in her book, she encountered initial resistance
to a QSAR approach at Abbott Laboratories. Another significant book that
was published in the late 1970s was a compilation of substituent constants
[58]. These parameters were heavily relied upon in QSAR investigations.

The decade of the 1970s saw the administration in Washington, DC, set
the laudatory goal of conquering cancer. Large sums of taxpayer dollars were
poured into the National Cancer Institute for redistribution to worthy aca-
demic research projects. Naturally, many professors, including those whose
work was related to cancer in the most tenuous and remote way, lined up to
obtain a grant. The result was that many academic theoretical chemistry
papers published in the 1970s included in their introduction rather farfetched
claims as to how the quantum chemical calculations being reported were
going to be applicable (someday) to the design of anticancer agents. Compu-
tational chemists in industry were not touched by this phenomenon because
they were supported by the sales efforts of the manufacturers of the pharma-
ceuticals and were more focused on the real task of aiding drug discovery.

1.5 GROWTH: THE 1980s

If the 1960s were the Dark Ages and the 1970s were the Middle Ages, the
1980s were the Renaissance, the Baroque Period, and the Enlightenment all
rolled into one. The decade of the 1980s was when the various approaches of
quantum chemistry, molecular mechanics, molecular simulations, QSAR,
and molecular graphics coalesced into modern computational chemistry.

In the world of scientific publishing, a seminal event occurred in 1980.
Professor Allinger launched his Journal of Computational Chemistry. This
helped stamp a name on the field. Before the journal began publishing, the
field was variously called theoretical chemistry, calculational chemistry, mod-
eling, etc. Interestingly, Allinger first took his proposal to the business man-
agers for publications of the American Chemical Society (ACS). Unfortunately,
they rejected the concept. Allinger turned to publisher John Wiley & Sons,
which went on to become the premier producer of journals and books in the
field. Nearly 25 years passed before the ACS moved to rectify its mistake,
and in 2005 it remolded its Journal of Chemical Information and Computer
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Sciences (JCICS) in an attempt to meet the needs of today’s computational
chemists. JCICS was becoming the most popular venue for computational
chemists to publish work on combinatorial library designs (see Fig. 1.2 and
Section 1.6 on the 1990s).

Several exciting technical advances fostered the improved environment for
computer use at pharmaceutical companies in the 1980s. The first was a devel-
opment of the VAX 11/780 computer by Digital Equipment Corporation
(DEC) in 1979. The machine was departmental size, that is, the price, dimen-
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Figure 1.2 Journals that have published the most papers on combinatorial library
design. Total number of papers published on this subject according to the Chemical
Abstract Service’s CAPLUS and MEDLINE databases for all years through 2004
plus three-quarters of 2005.
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sions, and easy care of the machine allowed each department or group to have
its own superminicomputer. This was a start toward noncentralized control
over computing resources. At Lilly, the small-molecule X-ray crystallo-
graphers were the first to gain approval for the purchase of a VAX, around
1980. Fortunately, the computational chemists and a few other scientists were
allowed to use it, too. The machine was a delight to use and far better than any
of the batch job-oriented IBM mainframes of the past. The VAX could be run
interactively. Users communicated with the VAX through interactive graphical
terminals. The first terminals were monochrome. The first VAX at Lilly was
fine for one or two users but would get bogged down, and response times would
slow to a crawl if more than five users were logged on simultaneously. Lilly
soon started building an ever more powerful cluster of VAXes (also called
VAXen in deference to the plural of “o0x”). Several other hardware companies
that manufactured superminicomputers in the same class as the VAX sprung
up. But DEC proved to be a good, relatively long-lasting vendor to deal with,
and many pharmaceutical companies acquired VA Xes for research. (However,
DEC and those other hardware companies no longer exist.)

The pharmaceutical companies certainly noticed the development of the
IBM personal computer (PC), but its DOS (disk operating system) made
learning to use it difficult. Some scientists bought these machines. The Apple
Macintosh appeared on the scene in 1984. With its cute little, lightweight,
all-in-one box including monochrome screen, the Mac brought interactive
computing to a new standard of user friendliness. Soon after becoming aware
of these machines, nearly every medicinal chemist wanted one at work. The
machines were great at word processing, graphing, and managing small (labo-
ratory) databases. The early floppy disks formatted for the Macs held only
400 KB, but by 1988 double-sided, double-density disks had a capacity of
1400 KB, which seemed plenty in those days. In contrast to today’s huge
applications requiring a compact disk for storage, a typical program of the
1980s could be stuffed on one or maybe two floppy disks.

On the software front, three advances changed the minds of the medicinal
chemists from being diehard skeptics to almost enthusiastic users. One
advance was the development of electronic mail. As the Macs and terminals
to the VAX spread to all the chemists in drug discovery and development,
the desirability of being connected became obvious. The chemists could com-
municate with each other and with management and could tap into databases
and other computer resources. As electronic traffic increased, research build-
ings had to be periodically retrofitted with each new generation of cabling
to the computers. A side effect of the spread of computer terminals to the
desktop of every scientist was that management could cut back on secretarial
help for scientists, so they had to do their own keyboarding to write reports
and papers.

The second important software advance was ChemDraw, which was released
first for the Mac in 1986 [59-62]. This program gave chemists the ability to
quickly create two-dimensional chemical diagrams. Every medicinal chemist
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could appreciate the aesthetics of a neat ChemDraw diagram. The diagrams
could be cut and pasted into reports, articles, and patents. The old plastic ring
templates for hand drawing chemical diagrams were suddenly unnecessary.

The third software advance also had an aesthetic element. This was the
technology of computer graphics, or when 3D structures were displayed on
the computer screens, molecular graphics. Whereas a medicinal chemist
might have trouble understanding the significance of the highest occupied
molecular orbital or the octanol-water partition coefficient of a structure, he
or she could readily appreciate the stick, ball-and-stick, tube, and space-filling
representations of 3D molecular structures [63-65]. The graphics could be
shown in color and, on more sophisticated terminals, in stereo. These images
were so stunning that one director of drug discovery at Lilly decreed that
terms like “theoretical chemistry,” “molecular modeling,” and “computa-
tional chemistry” were out. The whole field was henceforth to be called
“molecular graphics” as far as he was concerned. A picture was something
he could understand!

Naturally, with the flood of new computer technology came the need to
train the research scientists in its use. Whereas ChemDraw running on a Mac
was so easy that medicinal chemists could learn to use it after an hour or less
of training, the VAX was a little more formidable. One of the authors (DBB)
was involved in preparing and teaching VAX classes offered to the medicinal
chemists and process chemists at Lilly.

Computer programs that the computational chemists had been running on
the arcane IBM mainframes were ported to the VA Xes. This step made the
programs more accessible because all the chemists were given VAX accounts.
So, although the other programs (e.g., e-mail and ChemDraw) enticed the
medicinal chemist to sit down in front of the computer screen, he or she was
now more likely to experiment with molecular modeling calculations. (As
discussed elsewhere [66], the terms computational chemistry and molecular
modeling were used more or less interchangeably at pharmaceutical compa-
nies.) Besides the classes and workshops, one-on-one training was offered to
help the medicinal chemists run the computational chemistry programs. This
was generally fruitful but occasionally led to amusing results such as when
one medicinal chemist burst out of his lab to happily announce his discovery
that he could obtain a correct-looking 3D structure from MM?2 optimization
even if he did not bother to attach hydrogens to the carbons. However, he had
not bothered to check the bond lengths and bond angles for his molecule.

On a broader front, large and small pharmaceutical companies became
aware of the potential for computer-aided drug design. Although pharmaceu-
tical companies were understandably reticent to discuss what compounds they
were pursuing, they were quite free in disclosing their computational chem-
istry infrastructure. For instance, Merck, which had grown its modeling group
to be one of the largest in the world, published its system in 1980 [67]. Lilly’s
infrastructure was described at a national meeting of the American Chemical
Society in 1982 [68].
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A few years later, a survey was conducted of 48 pharmaceutical and chemical
companies that were using computer-aided molecular design methods and were
operating in the United States [69]. Between 1975 and 1985, the number of
computational chemists employed at these companies increased from less than
30 to about 150, more than doubling every five years. Thus more companies
were jumping on the bandwagon, and companies that were already in this area
were expanding their efforts. Hiring of computational chemists accelerated
through the decade [70]. Aware of the polarization that could exist between
theoretical and medicinal chemists, some companies tried to circumvent this
problem by hiring organic chemistry Ph.D.s who had spent a year or two doing
postdoctoral research in molecular modeling. This trend was so pervasive that
by 1985 only about a fifth of the computational chemists working at pharma-
ceutical companies came from a quantum mechanical background. Students,
too, became aware of the fact that if their Ph.D. experience was in quantum
chemistry, it would enhance their job prospects if they spent a year or two in
some other area such as molecular dynamics simulations of proteins.

The computational chemistry techniques used most frequently were molec-
ular graphics and molecular mechanics. Ab initio programs were in use at 21
of the 48 companies. Over 80% of the companies were using commercially
produced software. Two-thirds of the companies were using software sold by
Molecular Design Ltd. (MDL). A quarter were using SYBYL from Tripos
Associates, and 15% were using the molecular modeling program CHEM-
GRAF by Chemical Design Ltd.

The following companies had five or more scientists working full-time as
computational chemists in 1985: Abbott, DuPont, Lederle (American Cyana-
mid), Merck, Rohm and Haas, Searle, SmithKline Beecham, and Upjohn.
Some of these companies had as many as 12 people working on computer-
aided molecular design applications and software development. For the 48
companies, the mean ratio of the number of synthetic chemists to computa-
tional chemists was 29:1. This ratio reflects not only what percentage of a
company’s research effort was computer based, but also the number of syn-
thetic chemists that each computational chemist might serve. Hence, a small
ratio indicates more emphasis on computing or a small staff of synthetic chem-
ists. Pharmaceutical companies with low ratios (less than 15:1) included
Abbott, Alcon, Allergan, Norwich Eaton (Proctor & Gamble), and Searle.
The most common organizational arrangement (at 40% of the 48 companies)
was for the computational chemists to be integrated in the same department
or division as the synthetic chemists. The other companies tried placing their
computational chemists in a physical/analytical group, in a computer science
group, or in their own unit.

About three-quarters of the 48 companies were using a VAX 11/780, 785,
or 730 as their primary computing platform. The IBM 3033, 3083, 4341, etc.
were being used for molecular modeling at about a third of the companies.
(The percentages add up to more than 100% because larger companies had
several types of machines.) The most commonly used graphics terminal was
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the Evans and Sutherland PS300 (E&S PS300) (40%), followed by Tektronix,
Envison, and Retrographics VT640 at about one-third of the companies
each and IMLAC (25%). The most-used brands of plotter in 1985 were the
Hewlett-Packard and Versatec.

As cited above, the most widely used graphics terminal in 1985 was the
E&S PS300. This machine was popular because of its very high resolution,
color, speed, and stereo capabilities. (It is stunning to think that a company
so dominant during one decade could totally disappear from the market a
decade later. Such are the foibles of computer technology.) At Lilly, the E&S
PS300 was set up in a large lighted room with black curtains enshrouding the
cubicle with the machine. Lilly scientists were free to use the software running
on the machine. In addition, the terminal also served as a showcase of Lilly’s
research prowess that was displayed to visiting Lilly sales representatives and
dignitaries. No doubt a similar situation occurred at other companies.

The 1980s saw an important change in the way software was handled. In
the 1970s, most of the programs used by computational chemists were
exchanged essentially freely through QCPE, exchanged person to person, or
developed in-house. But in the 1980s, many of the most popular programs—
and some less popular ones—were commercialized. The number of software
vendors mushroomed. For example, Pople’s programs for ab initio calcula-
tions were withdrawn from QCPE; marketing rights were turned over to a
company he helped found, Gaussian Inc. (Pittsburgh, Pennsylvania). This
company also took responsibility for continued development of the software.
In the molecular modeling arena, Tripos Associates (St. Louis, Missouri) was
dominant by the mid-1980s. Their program SYBYL originally came from
academic laboratories at Washington University (St. Louis) [71].

In the arena of chemical structure management, MDL (then in Hayward,
California) was dominant. This company, which was founded in 1978 by Prof.
Todd Wipke and others, marketed a program called MACCS for management
of databases of compounds synthesized at or acquired by pharmaceutical
companies. The software allowed substructure searching and later similarity
searching [72, 73]. The software was vastly better than the manual systems
that pharmaceutical companies had been using for recording compounds on
file cards that were stored in filing cabinets. Except for some companies such
as Upjohn that had their own home-grown software for management of their
corporate compounds, many companies bought MACCS and became depen-
dent on it. As happens in a free market where there is little competition,
MACCS was very expensive. Few if any academic groups could afford it. A
serious competing software product for compound management did not reach
the market until 1987, when Daylight Chemical Information Systems was
founded. By then, pharmaceutical companies were so wedded to MACCS that
there was great inertia against switching their databases to another platform,
even if it was cheaper and better suited for some tasks. In 1982, MDL started
selling REACCS, a database management system for chemical reactions.
Medicinal chemists liked both MACCS and REACCS. The former could be
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used to check whether a compound had previously been synthesized at a
company and how much material was left in inventory. The latter program
could be used to retrieve information about synthetic transformations and
reaction conditions that had been published in the literature.

Some other momentous advances occurred on the software front. One was
the writing of MOPAC, a semiempirical molecular orbital program, by Dr.
James J. P. Stewart, a postdoctoral associate in Prof. Michael Dewar’s group
at the University of Texas at Austin [74-76]. The program was the first widely
used program capable of automatically optimizing the geometry of molecules.
This was a huge improvement over prior programs that could only perform
calculations on fixed geometries. Formerly, a user would have to vary a bond
length or a bond angle in increments, doing a separate calculation for each,
then fit a parabola to the data points and try to guess where the minimum
was. Hence MOPAC made the determination of 3D structures much simpler
and more efficient. The program could handle molecules large enough to be
of pharmaceutical interest. In the days of the VAX, a geometry optimization
could run in two or three weeks. An interruption of a run due to a machine
shutdown meant rerunning the calculation from the start. For the most part,
however, the VA Xes were fairly stable.

MOPAC was initially applicable to any molecule parameterized for Dewar’s
MINDO/3 or MNDO molecular orbital methods (i.e., common elements of
the first and second rows of the periodic table). The optimized geometries
were not in perfect agreement with experimental numbers but were better
than what could have been obtained by prior molecular orbital programs for
large molecules (those beyond the scope of ab initio calculations). Stewart
made his program available through QCPE in 1984, and it quickly became
(and long remained) the most requested program from QCPE’s library of
several hundred [77]. Unlike commercialized software, programs from QCPE
were attractive because they were distributed as source code and cost very
little.

In the arena of molecular mechanics, Prof. Allinger’s continued, meticu-
lous refinement of a experimentally based force field for organic compounds
was welcomed by chemists interested in molecular modeling at pharmaceuti-
cal companies. The MM2 force field [78, 79] gave better results than MMI.
To fund his research, Allinger sold distribution rights for the program initially
to Molecular Design Ltd. (At the time, MDL also marketed some other
molecular modeling programs.)

A program of special interest to the pharmaceutical industry was CLOGP.
This program was developed by Prof. Al Leo (Pomona College) in the 1980s
[80-82]. It was initially marketed through Daylight Chemical Information
Systems (then of New Orleans and California). CLOGP could predict the
lipophilicity of organic molecules. The algorithm was based on summing the
contribution from each fragment (set of atoms) within a structure. The frag-
ment contributions were parameterized to reproduce experimental octanol-
water partition coefficients, log P,,. There was some discussion among
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scientists about whether octanol was the best organic solvent to mimic biologi-
cal tissues, but this solvent proved to be the most used. To varying degrees,
lipophilicity is related to many molecular properties including molecular
volume, molecular surface area, transport through membranes, and binding
to receptor surfaces, and hence to many different bioactivities. The calculated
log P, values were widely used as a descriptor in QSAR studies in both
industry and academia.

Yet another program was Dr. Kurt Enslein’s TOPKAT [83, 84]. It was
sold through his company, Health Designs (Rochester, New York). The
software was based on statistics and was trained to predict the toxicity of a
molecule from its structural fragments. Hence compounds with fragments
such as nitro or nitroso would score poorly, basically confirming what an
experienced medicinal chemist already knew. The toxicological end points
included carcinogenicity, mutagenicity, teratogenicity, skin and eye irrita-
tion, and so forth. Today, pharmaceutical companies routinely try to pre-
dict toxicity, metabolism, bioavailability, and other factors that determine
whether a highly potent ligand has what it takes to become a medicine. But
back in the 1980s, the science was just beginning to be tackled. The main
market for the program was probably government laboratories and regula-
tors. Pharmaceutical laboratories were aware of the existence of the program
but were leery of using it much. Companies trying to develop drugs were
afraid that if the program, which was of unknown reliability for any specific
compound, erroneously predicted danger for a structure, it could kill a
project even though a multitude of laboratory experiments might give the
compound a clean bill of health. There was also the worry about litigious
lawyers. A compound could pass all the difficult hurdles of becoming a
pharmaceutical, yet some undesirable, unexpected side effect might show
up in some small percentage of patients taking it. If lawyers and lay juries,
who frequently have trouble understanding science, the relative merits of
different experiments, and the benefit-risk ratio associated with any phar-
maceutical product, learned that a computer program had once put up a red
flag for the compound, the pharmaceutical company could be alleged to be
at fault.

We briefly mention one other commercially produced program. That
program was SAS, a comprehensive data management and statistics program.
The program was used mainly for handling clinical data that was analyzed by
the statisticians at each company. Computational chemists also used SAS and
other programs when statistical analyses were needed. SAS also had unique
capabilities for graphical presentation of multidimensional numerical data
[85] (this was in the days before Spotfire).

With the widespread commercialization of molecular modeling software
in the 1980s, came both a boon and a bane to the computational chemist and
pharmaceutical companies. The boon was that the software vendors sent
marketing people to individual companies as well as to scientific meetings.
The marketeers would extol the virtues of the programs they were pushing.
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Great advances in drug discovery were promised if only the vendor’s software
systems were put in the hands of the scientists. Impressive demonstrations of
molecular graphics, overlaying molecules, and so forth convinced company
managers and medicinal chemists that here was the key to increasing research
productivity. As a result of this marketing, most pharmaceutical companies
purchased the software packages. The bane was that computer-aided drug
design (CADD) was oversold, thereby setting up unrealistic expectations of
what could be achieved by the software. Also, unrealistic expectations were
set for what bench chemists could accomplish with the software. Unless the
experimentalists devoted a good deal of time to learning the methods and
limitations, the software was best left in the hands of computational chemistry
experts.

Also in the 1980s, structure-based drug design (SBDD) underwent a
similar cycle. Early proponents oversold what could be achieved through
SBDD, thereby causing pharmaceutical companies to reconsider their invest-
ments when they discovered that SBDD too was no panacea for filling the
drug discovery cornucopia with choice molecules for development. Never-
theless, SBDD was an important advance.

All through the 1970s, computational chemists were often rhetorically
quizzed by critics about what if any pharmaceutical product had ever been
designed by computer. Industrial computational chemists had a solid number
of scientific accomplishments but were basically on the defensive when chal-
lenged with this question. Only a few computer-designed structures had ever
been synthesized. Only a very tiny percentage of molecules—from any
source—ever makes it as far as being a clinical candidate. The stringent cri-
teria set for pharmaceutical products to be used in humans winnowed out
almost all molecules. The odds were not good for any computational chemist
achieving the ultimate success, a drug derived with the aid of the computer.
In fact, many medicinal chemists would toil diligently their whole career and
never have one of their compounds selected as a candidate for clinical
development.

Another factor was that there were only a few drug targets that had had
their 3D structures solved prior to the advancing methods for protein crystal-
lography of the 1980s. One such early protein was dihydrofolate reductase
(DHFR), the structures of which became known in the late 1970s [86, 87].
This protein became a favorite target of molecular modeling/drug design
efforts in industry and elsewhere in the 1980s. Many resources were expended
trying to find better inhibitors than the marketed pharmaceuticals of the
antineoplastic methotrexate or the antibacterial trimethoprim. Innumerable
papers and lectures sprung from those efforts. Scientists do not like to report
negative results, but finally a frank admission came in 1988. A review con-
cluded that none of the computer-based efforts at his company or disclosed
by others in the literature had yielded better drugs [88].

Although this first major, widespread effort at SBDD was a disappoint-
ment, the situation looked better on the QSAR front. In Japan, Koga employed
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classic (Hansch-type) QSAR while discovering the antibacterial agent nor-
floxacin around 1982 [89-91]. Norfloxacin was the first of the third-generation
analogs of nalidixic acid to reach the marketplace. This early success may not
have received the notice it deserved, perhaps because the field of computer-
aided drug design continued to focus heavily on computer graphics, molecular
dynamics, X-ray crystallography, and nuclear magnetic resonance spectros-
copy [92]. Another factor may have been that medicinal chemists and micro-
biologists at other pharmaceutical companies capitalized on the discovery of
norfloxacin to elaborate even better quinoline antibacterials that eventually
dominated the market.

As computers and software improved, SBDD became a more popular
approach to drug discovery. One company, Agouron in San Diego, California,
set a new paradigm for discovery based on iterations of crystallography and
medicinal chemistry. As new compounds were made, some could be cocrys-
tallized with the target protein. The 3D structure of the complex was solved
by rapid computer techniques. Observations of how the compounds fit into
the receptor suggested ways to improve affinity, leading to another round of
synthesis and crystallography. Although considered by its practitioners and
most others as an experimental science, protein crystallography (now popu-
larly called structural biology, see also Chapter 12) often employed a step
whereby the refraction data were refined in conjunction with constrained
molecular dynamics (MD) simulations. Dr. Axel Briinger’s program X-PLOR
[93] met this important need. The force field in the program had its origin in
CHARMM developed by Prof. Martin Karplus’s group at Harvard [94].
Pharmaceutical companies that set up protein crystallography groups acquired
X-PLOR to run on their computers.

The SBDD approach affected computational chemists positively. The
increased number of 3D structures of therapeutically relevant targets opened
new opportunities for molecular modeling of the receptor sites. Computa-
tional chemists assisted the medicinal chemists in interpreting the fruits of
crystallography for design of new ligands.

Molecular dynamics simulations can consume prodigious amounts of com-
puter time. Not only are proteins very large structures, but also the MD
results are regarded as better the longer they are run because more of con-
formational space is assumed to be sampled by the jiggling molecules. Even
more demand for computer power appeared necessary when free energy
perturbation (FEP) theory appeared on the scene. Some of the brightest
luminaries in academic computational chemistry proclaimed that here was a
powerful new method for designing drugs [95, 96]. Pharmaceutical companies
were influenced by these claims [97]. On the other hand, computational chem-
ists closer to the frontline of working with medicinal chemists generally rec-
ognized that whereas FEP was a powerful method for accurately calculating
the binding energy between ligands and macromolecular targets, it was too
slow for extensive use in actual drug discovery. The molecular modifications
that could be simulated with FEP treatment, such as changing one substituent
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to another, were relatively minor. Because the FEP simulations had to be run
so long to obtain good results, it was often possible for a medicinal chemist
to synthesize the new modification in less time than it took to do the calcula-
tions. Also, for cases in which a synthesis would take longer than the calcula-
tions, not many industrial medicinal chemists would rate the modification
worth the effort. Researchers in industry are under a great deal of pressure
to tackle problems quickly and not spend too much time on them.

The insatiable need for more computing resources in the 1980s sensitized
the pharmaceutical companies to the technological advances leading to the
manufacture of supercomputers [98]. Some pharmaceutical companies opted
for specialized machines such as array processors. By the mid-1980s, for
example, several pharmaceutical companies had acquired the Floating Point
System (FPS) 164. Other pharmaceutical companies sought to meet their
needs by buying time and/or partnerships with one of the state or national
supercomputing centers formed in the United States, Europe, and Japan. For
instance, in 1988 Lilly partnered with the National Center for Supercomput-
ing Applications (NCSA) in Urbana-Champaign, Illinois. Meanwhile, super-
computer manufacturers such as Cray Research and ETA Systems, both
in Minnesota, courted scientists and managers at the pharmaceutical
companies.

A phrase occasionally heard in this period was that computations were the
“third way” of science. The other two traditional ways to advance science
were experiment and theory. The concept behind the new phrase was that
computing could be used to develop and test theories and to stimulate ideas
for new experiments.

1.6 FRUITION: THE 1990s

The 1990s was a decade of fruition because the computer-based drug discov-
ery work of the 1980s yielded an impressive number of new chemical entities
reaching the pharmaceutical marketplace. We elaborate on this statement
later in this section, but first we complete the story about supercomputers in
the pharmaceutical industry.

Pharmaceutical companies were accustomed to supporting their own
research and making large investments in it. In fact, the pharmaceutical
industry has long maintained the largest self-supporting research enterprise
in the world. However, the price tag on a supercomputer was daunting. To
help open the pharmaceutical industry as a market for supercomputers, the
chief executive officer (CEO) of Cray Research took the bold step of paying
a visit to the CEO of Lilly in Indianapolis. Apparently, Cray’s strategy was
to entice a major pharmaceutical company to purchase a supercomputer, and
then additional pharmaceutical companies might follow suit in an attempt to
keep their research competitive. Lilly was offered a Cray-2 at an irresistible
price. Not only did Lilly buy a machine, but other pharmaceutical companies
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either bought or leased a Cray. Merck, Bristol-Myers Squibb, Marion Merrell
Dow (then a large company in Cincinnati, Ohio), Johnson & Johnson, and
Bayer were among the companies that chose a Cray. Some of these machines
were the older X-MP or the smaller J90 machine, the latter being less expen-
sive to maintain.

After Lilly’s purchase of the Cray 25-2/128, line managers were given the
responsibility to make sure the purchase decision had a favorable outcome.
This was a welcome opportunity because line management was fully confi-
dent that supercomputing would revolutionize research and development
[99]. The managers believed that a supercomputer would enable scientists to
test more ideas than would be practical with older computers. Management
was optimistic that a supercomputer would foster collaborations and informa-
tion sharing among employees in different disciplines at the company. The
managers hoped that both scientific and business uses of the machine would
materialize. Ultimately, then, supercomputing would speed the identification
of promising new drug candidates. Scientists closer to the task of using the
supercomputer saw the machine primarily as a tool for performing longer
molecular dynamics simulations and quantum mechanical calculations on
large molecules. However, if some other computational technique such as
QSAR or data mining was more effective at discovering and optimizing new
lead compounds, then the supercomputer might not fulfill the dreams envi-
sioned for it. A VAX cluster remained an essential part of the technology
infrastructure best suited for management of the corporate library of com-
pounds (see more about this below).

Lilly organized special workshops to train potential users of the Cray. This
pool of potential users included as many willing medicinal chemists and other
personnel as possible. In-house computational chemists and other experts
were assigned the responsibility of conducting the off-site, week-long work-
shops. The workshops covered not only how to submit and retrieve jobs but
also the general methods of molecular modeling, molecular dynamics,
quantum chemistry, and QSAR. The latter, as mentioned, did not require
supercomputing resources, except perhaps occasionally to generate quantum
mechanical descriptors. Mainly, however, the training had the concomitant
benefit of exposing more medicinal chemists, including younger ones, to what
could be achieved with the current state of the art of computational chemistry
applied to molecular design.

As the role of the computational chemist became more important, atti-
tudes toward them became more accepting. At some large, old pharmaceuti-
cal houses, and at many smaller, newer companies, it was normal practice to
allow computational chemists to be co-inventors on patents if the computa-
tional chemists contributed to a discovery. Other companies, including Lilly,
had long had a company-wide policy that computational chemists could not
be on patents. The policy was changed at Lilly as the 1990s dawned. Compu-
tational chemists were becoming nearly equal partners in the quest to dis-
cover drugs.
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Lilly’s Cray also served as an impressive public relations showcase. The
machine was housed in a special, climate-controlled room. One side of the
darkened room had a wall of large glass windows treated with polymer-
dispersed liquid crystals. The thousands of visitors who came to Lilly each
year were escorted into a uniquely designed observation room where an excel-
lent video was shown that explained the supercomputer and how it could be
used for drug discovery. The observation room was automatically darkened
at the start of the video. At the dramatic finish of the video, the translucent
glass wall was turned clear and bright lights were turned on inside the com-
puter room, revealing the Cray-2 and its cooling tower for the heat transfer
liquid. The visitors enjoyed the spectacle.

To the disappointment of Lilly’s guest relations department, Lilly’s Cray-2
was later replaced with a Cray J90, a mundane-looking machine. But the J90
was more economical, especially because it was leased. The supercomputers
were almost always busy with molecular dynamics and quantum mechanical
calculations [100]. Of the personnel at the company, the computational chem-
ists were the main beneficiaries of supercomputing.

At the same time supercomputers that were creating excitement at a small
number of pharmaceutical companies, another hardware development was
attracting attention at just about every company interested in designing drugs.
Workstations from Silicon Graphics Inc. (SGI) were becoming increasingly
popular for molecular research. These high-performance, UNIX-based
machines were attractive because of their ability to handle large calculations
quickly and because of their high-resolution, interactive computer graphics.
Although a supercomputer was fine for CPU-intensive jobs, the workstations
were better suited for interactive molecular modeling software being used for
drug research. The workstations became so popular that some medicinal
chemists wanted them for their offices, not so much for extensive use but
rather as a status symbol.

Another pivotal event affecting the hardware situation of the early 1990s
merits mention. As already stated, the Apple Macintoshes were well liked by
scientists. However, in 1994 Apple lost its lawsuit against Microsoft regarding
the similarities of the Windows graphical user interface (GUI) to Apple’s
desktop design. Also, the price of Windows-based PCs dropped significantly
below that of Macs. The tables tilted in favor of PCs. More scientists began to
use PCs. At Lilly, and maybe other companies, the chief information officer
(a position that did not even exist until computer technology became so critical
to corporate success) decreed that the company scientists would have to switch
to PCs whether they wanted to or not. The reasons for this were severalfold.
The PCs were more economical. With PCs being so cheap, it was likely more
people would use them, and hence there was a worry that software for Macs
would become less plentiful. Also, the problem of incompatible files would be
eliminated if all employees used the same type of computer and software.

On the software front, the early 1990s witnessed a continued trend toward
commercially produced programs being used in pharmaceutical companies.
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Programs such as SYBYL (Tripos), Insight/Discover (BIOSYM), and
Quanta/CHARMmMm (Polygen, and later Molecular Simulations Inc., and now
Accelrys) were popular around the world for molecular modeling and simula-
tions. Some pharmaceutical companies bought licenses to all three of these
well-known packages. Use of commercial software freed the in-house com-
putational chemists from the laborious task of code development, documenta-
tion, and maintenance, so that they would have more time to work on actual
drug design. Another advantage of using commercial software was that the
larger vendors would have a help desk that users could telephone for assis-
tance when software problems arose, as they often did. The availability of the
help desk meant that the in-house computational chemists would have fewer
interruptions from medicinal chemists who were having difficulty getting the
software to work. On the other hand, some companies, particularly Merck
and Upjohn, preferred to develop software in-house because it was thought
to be better than what the vendors could provide.

Increasing use of commercial software for computational chemistry meant
a declining role for software from QCPE. QCPE had passed its zenith by
about 1992, when it had almost 1900 members and over 600 programs in its
catalog. This catalog included about 15 molecular modeling programs written
at pharmaceutical companies and contributed for the good of the community
of computational chemists. Among the companies contributing software were
Merck, DuPont, Lilly, Abbott, and Novartis. When distribution rights for
MOPAC were acquired by Fujitsu in 1992, it was a severe blow to QCPE.
After a period of decline, the operations of QCPE changed in 1998. Today
only a web-based operation continues at Indiana University, Bloomington.

The 1990s was a decade of change for the software vendors also. The
California company that started out as BioDesign became Molecular Simula-
tions Inc. (MSI). MSI went on a buying spree starting in 1991. It grew large
by acquiring other small software companies competing in the same drug
design market, including Polygen, BIOSYM, BioCAD, Oxford Molecular
(which had already acquired several other start-ups), and others [101]. Phar-
maceutical companies worried about this accretion because it could mean less
competition and it could mean that their favorite molecular dynamics (MD)
program might no longer be supported in the future. This latter possibility
has not come to pass because there has been sufficient loyalty and demand
for each MD package to remain on the market.

Researchers from pharmaceutical companies participated in user groups set
up by the software vendors. Pharmaceutical companies also bought into con-
sortia created by the software vendors. These consortia, some of which dated
back to the 1980s, aimed at developing new software tools or improving existing
software. The pharmaceutical companies hoped to get something for their
investments. Sometimes the net effect of these investments was that it enabled
the software vendors to hire several postdoctoral research associates who
worked on things that were of common interest to the investors. Although the
pharmaceutical companies received some benefit from the consortia, other
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needs such as more and better force field parameters remained underserved.
Inspired by the slow progress in one force field development consortium, Merck
single-handedly undertook the de novo development of a force field they call
the Merck Molecular Force Field (MMFF94). This force field, which targeted
the modeling of pharmaceutically interesting molecules well, was published
[102-108], and several software vendors subsequently incorporated it in their
molecular modeling programs. The accolades of fellow computational chemists
led to the developer being elected in 1992 to become chairman of one of the
Gordon Research Conferences on Computational Chemistry [109].

On the subject of molecular modeling and force fields, a general molecular
modeling package was developed in an organic chemistry laboratory at
Columbia University in New York City [110]. Perhaps because MacroModel
was written with organic chemists in mind, it proved popular with industrial
medicinal chemists, among others. The program was designed so that versions
of several good force fields could easily be invoked for any energy minimiza-
tion or molecular simulation.

The 1990s witnessed other exciting technological developments. In 1991,
Dr. Jan K. Labanowski, then an employee of the Ohio Supercomputer Center
(Columbus, Ohio), launched an electronic bulletin board called the Com-
putational Chemistry List (CCL). Computational chemists rapidly joined
because it was an effective forum for informal exchange of information. Com-
putational chemists at pharmaceutical companies were among the 2000 or so
members who joined in the 1990s. Often these employees would take the time
to answer questions from beginners, helping them learn about the field of
computer-aided drug design. The CCL was a place where the relative merits
of different methodologies and computers and the pros and cons of various
programming languages could be debated, sometimes passionately.

In 1991, MDL came out with a new embodiment of its compound manage-
ment software called ISIS (Integrated Scientific Information System).
Pharmaceutical companies upgraded to the new system, having become so
dependent on MDL. In general, managers of information technology at phar-
maceutical companies preferred one-stop solutions. On the other hand, com-
putational chemists found Daylight Chemical Information Systems software
more useful for developing new research applications.

MACCS and then ISIS gave researchers exceptional new tools for drug
discovery when similarity searching came along. Chemical structures were
stored in the database as connectivity tables (showing which atoms were con-
nected by bonds). In addition, chemical structures could be stored as a series
of on-off flags (“keys”) indicating the presence or absence of specific atoms
or combinations of atoms and/or bonds. The similarity of compounds could
be quantitated by the computer in terms of the percentage of keys that the
compounds shared in common. Thus, if a researcher was aware of a lead
structure from in-house work or the literature, it was possible to find com-
pounds in the corporate database that were similar and then get these com-
pounds assayed for biological activities. Therefore the technique of data
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mining became important. Depending on how large the database was, it was
fairly easy to find compounds with low levels of activity by this method. Some
of these active compounds might have a skeleton different from the lead
structure. The new skeleton could form the basis for subsequent lead opti-
mization. As Dr. Yvonne C. Martin (Abbott) has wryly commented in her
lectures at scientific meetings, one approach to drug discovery is to find a
compound that the target receptor sees as the same as an established ligand
but which a patent examiner sees as a different compound (and therefore
satisfying the novelty requirement for patentability).

Many or most of the results from data mining in industry went unpub-
lished. More recently, when a few academic researchers gained access to data
mining software, the weakly active compounds they found were excitedly
published. This difference between industry and academia in handling similar
kinds of results is a matter of priorities. In industry, the first priority is to find
marketable products and get them out the door. In academia, the priority is
to publish (especially in high-impact journals). Contrary to a common mis-
conception, scientists in industry do publish, a point we return to below.

Software use for drug discovery and development can be classified in
various ways. One way is technique based. Examples would be programs
based on force fields or on statistical fitting (the latter including log P predic-
tion or toxicity prediction). Another way to classify software is according to
whether the algorithm can be applied to cases in which the 3D structure of
the target receptor is known or not. An example of software useful when the
receptor structure is not known is Catalyst [111]. This program, which became
available in the early 1990s, tried to produce a 3D model of a pharmacophore
based on a small set of compounds with a range of activities against a given
target. The pharmacophore model, if determinable, could be used as a query
to search databases of 3D structures in an effort to find new potential
ligands.

In situations in which the computational chemist had the benefit of the 3D
structure of the target receptor, three methodologies came into increased
usage. One was docking, that is, letting an algorithm try to fit a ligand struc-
ture into a receptor. Docking methodology dates back to the 1980s, but the
1990s saw more crystal structures of pharmaceutically relevant proteins being
solved and used for ligand design [112]. A second technique of the 1990s
involved designing a computer algorithm to construct a ligand de novo inside
a receptor structure. The program would assemble fragments or “grow” a
chemical structure such that the electrostatic and steric attributes of the
receptor would be complemented by the ligand [113-115]. The third tech-
nique of the 1990s was virtual screening [116, 117]. The computer would
screen hypothetical ligand structures, not necessarily compounds in bottles,
against the 3D structure of a receptor in order to find those most likely to fit
and therefore worthy of synthesis and experimentation.

A new approach to drug discovery came to prominence around 1993. The
arrival of this approach was heralded with optimism reminiscent of earlier
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waves of new technologies. The proponents of this innovation—combinato-
rial chemistry—were organic chemists. The thinking behind combinatorial
chemistry seemed to be as follows. The chance of finding a molecule with
therapeutic value was extremely low (one in 5000 or one in 10,000 were rough
estimates that were often bandied about). Attempts at rational drug design
had not significantly improved the odds of finding those rare molecules that
could become a pharmaceutical product. Because the low odds could not be
beat, make tens of thousands, . . . no, hundreds of thousands, . . . no, millions
of compounds! Then, figuratively fire a massive number of these molecular
bullets at biological targets and hope that some might stick. New computer-
controlled robotic machinery would permit syntheses of all these compounds
much more economically than the traditional one-compound-at-a-time
process of medicinal chemistry. Likewise, computer-controlled robotic
machinery would automate the biological screening and reduce the cost per
assay.

Proponents promised that combinatorial chemistry was the way to keep
the drug discovery pipeline full. Pharmaceutical companies made massive
investments in people and machinery to set up the necessary equipment in
the 1990s. Some companies built large refrigerated storage rooms where the
libraries of compounds could be stored and retrieved by robots. The com-
puters to run the equipment had to be programmed. This work was done by
instrument engineers, although chemists helped set up the systems that con-
trolled the syntheses.

Combinatorial chemistry increased the rate of output of new compounds
by three orders of magnitude. Before combi-chem, a typical SAR at a phar-
maceutical company might have consisted of fewer than a couple hundred
compounds, and a massive effort involving 10-20 medicinal chemistry labo-
ratories might have produced two or three thousand compounds over a
number of years. In 1993, with traditional one-compound-at-a-time chemistry
it took one organic chemist on average one week to make one compound for
biological testing. Some years later, with combi-chem a chemist could easily
produce 2000 compounds per week.

With the arrival of combi-chem, computational chemists had a new task in
addition to what they had been doing. Computational chemistry was needed
so that the combinatorial chemistry was not mindlessly driven by whatever
reagents were available in chemical catalogs or from other sources. There
were several strategies to library design [118]. The first was to cover as much
of “compound space” as possible, that is, to produce a variety of structures
to increase the likelihood that one of the compounds would stick to the target.
Then after the drug discovery researchers had gained a general idea of what
structure(s) would bind to the target receptor, a second strategy would come
into play: to design compounds similar to the lead(s). Another need was to
assess the value of libraries being offered for sale by various outside interme-
diaries. Computational chemists could help determine whether these libraries
complemented or duplicated a company’s existing libraries of compounds and
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determine the degree of variety in the compounds being offered. How does
one describe chemical space and molecular similarity? Computational chem-
ists had already developed the technologies of molecular descriptors and
substructure keys, which we mentioned above. With these tools, the compu-
tational chemist could discern where structures were situated in multidimen-
sional compound or property space and provide advice to the medicinal
chemists.

Along with all the data generated by combi-chem and high-throughput
screening (HTS) came the need to manage and analyze the data. Hence,
computers and the science of informatics became increasingly vital.

The computational chemist was now more important to drug discovery
research than ever before. Hence by 1993-1994, these technological changes
possibly helped save the jobs of many computational chemists at a time when
pharmaceutical companies in the United States were downsizing, as we now
explain. In 1992-1993 an acute political force impinged on the pharmaceutical
industry in the United States. That force was the healthcare reform plan pro-
posed by Hillary and Bill Clinton. Readers who are well versed in history of
the 1930s will be aware of the economic system handed down from pre-World
War I Europe. Under that system, the means of production, that is, industry,
remains in private ownership but the prices that the companies can ask for
their products are regulated by government. That was the scheme underlying
the healthcare reform proposal. Pharmaceutical companies in the United
States generally favored any proposal that would increase access to their
products but feared this specific proposal because of the great uncertainty it
cast over the status quo and future growth prospects. As a result, thousands
of pharmaceutical workers—including research scientists—were laid off or
encouraged to retire. Rumors swirled around inside each pharmaceutical
company about who would be let go and who would retain their jobs. When
word came down about the corporate decisions, the computational chemists
were generally retained, but the ranks of the older medicinal chemists were
thinned. A new generation of managers at pharmaceutical companies now
realized that computer-assisted molecular design and library design were criti-
cal components of their company’s success. One is reminded of the observation
of the Nobel laureate physicist Max Planck, “An important scientific innova-
tion rarely makes its way by gradually winning over and converting its oppon-
ents. ... What does happen is that its opponents gradually die out and the
growing generation is familiarized with the idea from the beginning.”

Nevertheless, the Clintons’ healthcare reform scheme had a deleterious
effect on the hiring of new computational chemists. The job market for com-
putational chemists in the United States fell from a then record high in 1990
to a depression in 1992-1994 [119]. This happened because pharmaceutical
companies were afraid to expand until they were sure that the business
climate was once again hospitable for growth. The healthcare reform proposal
was defeated in the United States Congress, but it took a year or two before
pharmaceutical companies started rebuilding their workforces.
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Toward the mid-1990s, a new mode of delivering content came to the fore:
the web browser. Information technology (IT) engineers and computational
chemists help set up intranets at pharmaceutical companies. This allowed
easy distribution of management memos and other information to the employ-
ees. In addition, biological screening data could be posted on the intranet so
that medicinal chemists could quickly access it electronically. Computational
chemists made their applications (programs) web-enabled so that medicinal
chemists and others could perform calculations from their desktops.

The hardware situation continued to evolve. Personal computers became
ever more powerful in terms of speed and the amount of random access
memory (RAM) and hard drive capacity. The price of PCs continued to fall.
Clusters of PCs were built. Use of the open-source Linux operating system
spread in the 1990s. Distributed processing was developed so a long calcula-
tion could be farmed out to separate machines. Massively parallel processing
was tried. All these changes meant that the days of the supercomputers were
numbered.

Whereas the trend in the 1980s was toward dispersal of computing power
to the departments and the individual user, the IT administrators started
bringing the PCs under their centralized control in the 1990s. Software to
monitor each machine was installed so that what each user did could be
tracked. Following the example of other industries, some pharmaceutical
companies turned over the technical work of managing their networks of PCs
to outside contractors. Gradually, computational chemists and other workers
lost control over what could and could not be installed on their office machines.
One type of hardware, however, persisted through the 1990s and even to
today: the SGI workstations. These UNIX machines became more powerful
and remained popular for molecular modeling. Silicon Graphics Inc. acquired
the expiring Cray technology, but it did not seem to have much effect on their
workstation business.

Traditionally, in pursuit of their structure-activity relationships, medicinal
chemists had focused almost exclusively on finding compounds with greater
and greater potency. However, these SARs often ended up with compounds
that were unsuitable for development as pharmaceutical products. These
compounds would be too insoluble in water, or were not orally bioavailable,
or were eliminated too quickly or too slowly from mammalian bodies. Phar-
macologists and pharmaceutical development scientists for years had tried to
preach the need for medicinal chemists to also think about other factors that
determined whether a compound could be a medicine. Table 1.1 lists a number
of factors that determine whether a potent compound has what it takes to
become a drug. Experimentally, it was difficult to quantitate these other
factors. Often, the necessary manpower resources would not be allocated to
a compound until it had already been selected for project team status.

At the beginning of the 1990s, the factors in Table 1.1 were generally
beyond the capability of computational chemistry methods to predict reliably.
However, as the decade unfolded, computational chemists and other scientists
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TABLE 1.1 What It Takes for a Compound (Ligand) to Become a
Pharmaceutical Product

Absorption into the body, i.e., bioavailability

Behavior in humans as anticipated from preliminary testing in animal models, i.e.,
no untoward species differences

Distribution among the appropriate tissues of the body

Metabolism by the body or organisms living in the body

Ease of production, including, for instance, the existence of environmentally safe
routes of isolation or synthesis

Efficacy, i.e., whatever the compound does at its site(s) of action; the net effect is to
elicit a desirable therapeutic outcome

Elimination from the body, i.e., excretion

Medical need, which affects marketability

Novelty, which determines patentability

Pharmaceutical “elegance,” which encompasses factors related to route of
administration (taste, color, mixability with excipients, etc.)

Side effects of the compound and its degradation products are minimal or at least
tolerable

Solubility, preferably in water

Stability, so the compound will not degrade before being consumed and can reach
its site of action in a bioactive form

Therapeutic ratio, so that the concentration of the compound to elicit its
therapeutic effect is much lower than the concentration that would cause
untoward effects

Toxic effects of the compound and its degradation products are minimal

created new and better methodologies for selecting compounds with the char-
acteristics necessary to become a drug. In 1997, Lipinski’s now famous “Rule
of Five” was published [120]. These simple rules were easily encoded in data-
base mining operations at every company, so that compounds with low pros-
pects of becoming an orally active, small-molecule drug (less than 500 MW)
could be weeded out by computer.

The computational methods used in the 1980s focused, like medicinal
chemistry, on finding compounds with ever-higher affinity between the ligand
and its target receptor. That is why in the past we have advocated use of the
term computer-aided ligand design (CALD) rather than CADD. However,
with increased attention to the factors listed in Table 1.1, the field was finally
becoming more literally correct in calling itself CADD.

Another important change started in the mid-1990s. Traditionally, a QSAR
determined at a pharmaceutical company might have involved only 5-30
compounds. The size depended on how many compounds the medicinal
chemist had synthesized and submitted to testing by the biologists. Sometimes
this size data set sufficed to reveal useful trends. Other times, though, the
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QSARs were not very robust in terms of predictability. As large libraries of
compounds were produced, data sets available for QSAR analysis became
larger. With all that consistently produced (although not necessarily perfectly
accurate) biological data and a plethora of molecular descriptors, it was pos-
sible to find correlations with good predictability. In fact, QSAR proved to
be one of the best approaches to providing assistance to the medicinal chemist
in the 1990s. Computational chemists were inventive in creating new molecu-
lar descriptors. Hundreds have been described in the literature [121-123].

As stated in the opening of this section, the 1990s witnessed the fruition
of a number of drug design efforts. Making a new pharmaceutical product
available to patients is a long, difficult, and costly enterprise. It takes 10-15
years from the time a compound is discovered in the laboratory until it is
approved for physicians to prescribe. Hence, a molecule that reached the
pharmacies in the 1990s was probably first synthesized at a pharmaceutical
company well back in the 1980s. (Most of today’s medicines come from the
pharmaceutical industry rather than from government or academic laborato-
ries.) The improved methodologies of computational chemistry that became
available in the 1980s would therefore start to show their full impact in the
1990s. (Likewise, the improved experimental and computational methodolo-
gies of the 1990s should be bearing fruit now.)

Table 1.2 lists medicines whose discovery was aided in some way by
computer-based methods. Those compounds marked “CADD” were pub-

TABLE 1.2 Marketed Pharmaceuticals Whose Discovery Was Aided by
Computers

Generic Name Brand Name Year Discovery Activity
Approved in Assisted by
United States

Norfloxacin Noroxin 1983 QSAR Antibacterial
Losartan Cozaar 1994 CADD Antihypertensive
Dorzolamide Trusopt 1995 CADD/SBDD  Antiglaucoma
Ritonavir Norvir 1996 CADD Antiviral
Indinavir Crixivan 1996 CADD Antiviral
Donepezil Aricept 1997 QSAR Anti-Alzheimer’s
Zolmitriptan Zomig 1997 CADD Antimigraine
Nelfinavir Viracept 1997 SBDD Antiviral
Amprenavir Agenerase 1999 SBDD Antiviral
Zanamivir Relenza 1999 SBDD Antiviral
Oseltamivir Tamiflu 1999 SBDD Antiviral
Lopinavir Aluviran 2000 SBDD Antiviral
Imatinib Gleevec 2001 SBDD Antineoplastic
Erlotinib Tarceva 2004 SBDD Antineoplastic

Ximelagatran Exanta 2004 SBDD Anticoagulant
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licized in a series of earlier publications [references 124-128; see also
references 129 and 130, and Chapter 16 for other discussion]. These exam-
ples of CADD successes were gathered in 1997 when one of us (DBB)
undertook a survey of the corresponding authors of papers published after
1993 in the prestigious Journal of Medicinal Chemistry. Authors were
asked whether calculations were crucial to the discovery of any com-
pounds from their laboratory. Of the hundreds of replies, we culled out
all cases in which calculations had not led to drug discovery or had been
done post hoc on a clinical candidate or pharmaceutical product. We have
always felt strongly that the term “computer-aided drug design” should be
more than just doing a calculation; it should be providing information or
ideas that directly help with the conception of a useful new structure. We
retained only those cases where the senior author of a paper (usually a
medicinal chemist) vouched that computational chemistry had actually
been critically important in the research process that led to the discovery
of a compound that had reached the market. As seen in Table 1.2, there
were seven compounds meeting this criterion in the period 1994-1997. The
computational techniques used to find these seven compounds included
QSAR, ab initio molecular orbital calculations, molecular modeling,
molecular shape analysis [131], docking, active analog approach [132],
molecular mechanics, and SBDD.

More recently, a group in England led by a structural biologist compiled a
list of marketed medicines that came from SBDD [133]. These are labeled
“SBDD” in Table 1.2. It can be seen that there is only a little overlap between
the two compilations (CADD and SBDD). It can also be seen that the
number of pharmaceuticals from SBDD is very impressive. Computer-based
technologies are clearly making a difference in helping bring new medicines
to patients.

Looking at the success stories, we see that it has often been a team of
researchers working closely together that led to the success. It took quite a
while for other members of the drug discovery research community to appre-
ciate what computational chemistry could provide. There remains room for
further improvement in this regard. Computational chemistry is probably
most effective when researchers work in an environment where credit is
shared [134]. If management adopts a system whereby company scientists are
competing with each other, then collaborations are tempered. On the other
hand, if all members of an interdisciplinary team of scientists will benefit
when the team succeeds, then collaboration increases, synergies can occur,
and the team is more likely to succeed. Sometimes it helps to put the compu-
tational chemistry techniques in the hands of the medicinal chemists, but it
seems that only some of these chemists have the time and inclination to use
the techniques to best advantage. Therefore, computational chemistry experts
play an important role in maximizing the potential benefits of computer-
based technologies.
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1.7 EPILOGUE

To close, we distill in Figure 1.3 the essence of what we have described about
the history of computing at pharmaceutical companies over the last four
decades. We plot the number of papers published (and abstracted by Chemical
Abstracts Service) for each year from 1964 through 2004, the most recent
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Figure 1.3 Annual number of papers published by researchers at pharmaceutical
companies during a 41-year period. The data were obtained by searching the CAPLUS
and MEDLINE databases for papers related to “computer or calculation.” Then these
hits were refined with SciFinder Scholar by searching separately for 48 different
company names. Well-known companies from around the world were included. Com-
panies with more than 250 total hits in the period 1964-2004 are included in the plot.
The indexing by CAS is such that a search on SmithKline Beecham gave the same
number of hits as for GlaxoSmithKline (GSK) but much more than Smith Kline and
French. The downward trend of the sum after 2001 can be traced to fewer papers
coming from GSK. Initially, we had wanted to structure our SciFinder Scholar search
for all papers using terms pertaining to computational chemistry, molecular model-
ing, computer-aided drug design, quantitative structure-activity relationships, and so
forth. However, CAS classifies these terms as overlapping concepts, and so SciFinder
Scholar was unable to do the searches as desired. Searching on “computer or calcula-
tion” yields many relevant hits but also a small number of papers that are of question-
able relevance. This contamination stems from the subjective way abstractors at CAS
have indexed articles over the years. The irrelevant papers introduce noise in the data,
but hopefully the systematic error is relatively constant over the period covered.
CAPLUS covers 1500 journals. See color plate.
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complete year. These are papers that were indexed as pertaining to “computer
or calculation” and that came from pharmaceutical companies. We can learn
several things from Figure 1.3. First, industrial scientists do publish. Second,
the figure includes a list of pharmaceutical companies that have done the most
publishing of papers pertaining to computers or calculations. There are 15
companies with more than 250 papers each in the 41-year period. Some of
these companies ceased publishing simply because they were acquired by
other pharmaceutical companies, and hence the affiliation of the authors
changed. The companies are headquartered in the United States, Switzerland,
Germany, and Japan. Third, the number of publications increased slowly but
fairly steadily from 1964 through the mid-1980s. Then, from 1986 through
1992, the annual number of papers grew rapidly. This period is when the super-
minicomputers, supercomputers, and workstations appeared on the scene. We
also learn from Figure 1.3 that since 1994 the sum of the annual number of
papers published by the 15 companies has zigzagged around 325 papers per
year. Curiously, the recent years show no evidence of an upward trend.

As the twentieth century came to a close, the job market for computational
chemists had recovered from the 1992-1994 debacle. In fact, demand for
computational chemists leaped to new highs each year in the second half of
the 1990s [135]. Most of the new jobs were in industry, and most of these
industrial jobs were at pharmaceutical or biopharmaceutical companies. As
we noted at the beginning of this chapter, in 1960 there were essentially no
computational chemists in industry. But 40 years later, perhaps well over half
of all computational chemists were working in pharmaceutical laboratories.
The outlook for computational chemistry is therefore very much linked to the
health of the pharmaceutical industry itself. Forces that adversely affect phar-
maceutical companies will have a negative effect on the scientists who work
there as well as at auxiliary companies such as software vendors that develop
programs and databases for use in drug discovery and development.

Over the last four decades, we have witnessed waves of new technologies
sweep over the pharmaceutical industry. Sometimes these technologies tended
to be oversold at the beginning and turned out to not be a panacea to meet
the quota of the number of new chemical entities that each company would
like to launch each year. Experience has shown that computer technology so
pervasive at one point in time can almost disappear 10 years later.

Discovering new medicines is a serious, extremely difficult, and expensive
undertaking. Tens of thousands of scientists are employed in this activity.
Back in 1980, pharmaceutical and biotechnology companies operating in the
United States invested in aggregate about $2000 million in R&D. The sum
has steadily increased (although there was the slight pause in 1994 that we
mentioned above). By 2003, R&D investments had grown to $34,500 million.
In 2004, the total jumped to $38,800 million. The United States pharmaceuti-
cal industry invests far more in discovering new and better therapies than the
pharmaceutical industry in any other country or any government in the world.
Despite the ever-increasing investment in R&D each year, the annual number
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of new chemical entities (NCEs) approved for marketing in the United States
(or elsewhere) has not shown any overall increase in the last 25 years. The
number has fluctuated between 60 and 20 NCEs per year and has been around
30 per year recently. This very uncomfortable fact was not widely discussed
before the late 1990s [124] but is now well known. A recent analysis of NCE
data was able to find some reason for optimism that innovation is bringing to
market drugs with substantial advantage over existing treatments [136].
However, deciding whether R&D is becoming more productive depends on
how the NCE data are handled. Generally, most people in the field realize
that discovery research is not as easy or as productive as they would like.

In an attempt to boost NCE output, executives at pharmaceutical compa-
nies have put their researchers under extreme pressure to focus and produce.
Since the early 1990s, this pressure has moved in only one direction: up.

During two million years of human evolution, better intelligence at creating
and using tools has meant the difference between survival and extinction. In a
similar way, those pharmaceutical companies with scientists who are best at
creating and using tools will be able to innovate their way to the future. In con-
trast to the days of the hunter-gatherer cracking stones, today the tools are com-
puters and software, as well as chemistry and biology. With combinatorial
chemistry, high-throughput screening, genomics, and structural biology firmly
embedded in modern drug discovery efforts, computers are indispensable.

All musical composers work with the same set of notes, but the geniuses
put the notes together in an extraordinarily beautiful way. Synthetic chemists
all have available to them the same elements. The successful medicinal
chemist will combine atoms such that amazing therapeutic effect is achieved
with the resulting molecule. The computational chemist’s goal should be to
help the medicinal chemist by providing information about structural and
electronic requirements to enhance activity, namely, information about which
regions of compound space are most propitious for exploration.

Fortunately, all the effort that goes into pharmaceutical R&D does benefit
society. In nations where modern medicines are available, life expectancy has
increased and disability rates among the elderly have declined. Considering
all of the things that can go wrong with the human body, many challenges
remain for the pharmaceutical researcher. Hopefully, this chapter will inspire
some young readers to take up the challenge and join the noble quest to apply
science to help find cures to improve people’s lives.
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2.1 INTRODUCTION

Scientists from many different disciplines participate in pharmaceutical devel-
opment. Their research areas may be very different, but they all generate
scientific data (and text documents), which are the products of development
laboratories. Literally, truckloads of data and documents are submitted to the
regulatory authorities in support of investigational and marketing authoriza-
tion filings. For example, even a typical Investigational New Drug (IND)
application requires around 50,000 pages of supporting documents. One way
or another, every single data point has to go through the acquiring, analyzing,
managing, reporting, auditing, and archiving process according to a set of
specific rules and regulations. Needless to say, the wide use of computers has
tremendously increased efficiency and productivity in pharmaceutical devel-
opment. On the other hand, it has also created unique problems and chal-
lenges for the industry. This overview discusses these topics briefly by focusing
on the preclinical development area (also known as the area of Chemical
Manufacturing and Control, or CMC). Considering the pervasiveness of com-
puter applications in every scientist’s daily activities, special emphases are put
on three widely used computer systems:

« CDS—chromatographic data systems
« LIMS—Iaboratory information management systems
- TIMS—text information management systems

Itis probably fair to say that these three computer systems handle the majority
of the work in data/document management in the preclinical area, supporting
the New Drug Application (NDA) and Marketing Authorization Application
(MAA) filings. For each of these three types of systems, there are many
vendors who provide various products. The selection of the right product can
be complicated, and a mistake made in the process can also be costly. This
overview tries to list some of the vendors that are more focused on serving
the pharmaceutical industry. The lists are by no means comprehensive.
The readers are encouraged to contact the vendors for more in-depth
information.

It may also be beneficial to the reader if we define the sources of the sci-
entific data in preclinical development. The following are examples of the
development activities that generate the majority of the data:

+ Drug substance/drug product purity, potency, and other testing
- Drug substance/drug product stability testing

« Method development, validation, and transfer

« Drug product formulation development

+ Drug substance/drug product manufacturing process development, vali-
dation, and transfer
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- Master production and control record keeping
+ Batch production and control record keeping
« Equipment cleaning testing

Another important aspect for discussion is the impact of regulations, spe-
cifically the regulation on electronic document management and electronic
signatures, 21 CFR Part 11, published by the Food and Drug Administration
(FDA) for the first time in 1997 [1] (also see Chapter 26, which covers 21 CFR
Part 11 in detail). Since that time the draft rules of Part 11 have been with-
drawn and reissued along with various guidance documents [2-3]. Some of
the key points of Part 11 are as follows:

- Computer systems must be validated to ensure accuracy, reliability, and
consistency with intended performance.

« Computer systems must provide time-stamped audit trails to record
actions that create, modify, or delete electronic records.

- Computer system access must be limited to authorized personnel.
- Computer systems should have configurable user capabilities.

Even though Part 11 has not yet been enforced by the FDA, the rules have
impacted CDS, LIMS, and TIMS with regard to architectural design and
security of these systems.

2.2 CHROMATOGRAPHIC DATA SYSTEMS (CDS)

The importance of CDS is directly related to the roles that chromatography,
particularly high-performance liquid chromatography (HPLC) and gas chro-
matography (GC), play in pharmaceutical analysis. HPLC and GC are the
main workhorses in pharmaceutical analysis. In today’s pharmaceutical com-
panies, development work cannot be done without HPLC and GC. CDS are
also used for several other instrumental analysis technologies such as ion
(exchange) chromatography (IC), capillary electrophoresis (CE), and super-
critical fluid chromatography (SFC).

2.2.1 The Days Before CDS

In the 1960s and early 1970s, chromatographs were relatively primitive and
inefficient. Chromatographers had to use microsyringes for sample injection
and stopwatches for measurement of retention times. The chromatograms
were collected with a strip chart recorder. Data analysis was also performed
manually. Peak areas were obtained by drawing a “best fit” triangle manually
for each peak and then using the equation Area = ¥2Base x Height. At that
time, the management of chromatographic data was essentially paper based
and very inefficient [4].
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However, compared with the traditional analytical methods, the adoption
of chromatographic methods represented a significant improvement in phar-
maceutical analysis. This was because chromatographic methods had the
advantages of method specificity, the ability to separate and detect low-level
impurities. Specificity is especially important for methods intended for early-
phase drug development when the chemical and physical properties of the
active pharmaceutical ingredient (API) are not fully understood and the
synthetic processes are not fully developed. Therefore the assurance of safety
in clinical trials of an API relies heavily on the ability of analytical methods
to detect and quantitate unknown impurities that may pose safety concerns.
This task was not easily performed or simply could not be carried out by
classic wet chemistry methods. Therefore, slowly, HPLC and GC established
their places as the mainstream analytical methods in pharmaceutical
analysis.

As chromatographic methods became more and more important in the
pharmaceutical industry as well as in other industries, practical needs
prompted instrument vendors to come up with more efficient ways for col-
lecting and processing chromatographic data. In the mid-1970s, the integrator
was introduced. At first, the integrator worked similarly to a strip chart
recorder with the added capabilities of automatically calculating peak area
and peak height. Because of limited available memory, chromatograms could
not be stored for batch processing. However, new models with increasing
capabilities quickly replaced the older ones. The newer models had a battery
back-up to maintain integration parameters and larger memory modules to
allow the storage of chromatograms for playback and reintegration. At that
time, the integrator increased productivity and efficiency in pharmaceutical
analysis, which in turn made HPLC and GC even more popular.

2.2.2 The Emergence and Evolution of CDS

For some instrument vendors, the early CDS were developed as proprietary
products to help with the sale of instruments. The first generation of CDS
systems were based on a working model of multiuser, time-sharing minicom-
puters. The minicomputers were connected to terminals in the laboratory that
the analysts would use. The detector channels of the chromatographs were
connected to the data system through a device called the analog-to-digital
(A/D) converter, which would convert the analog signals from the detectors
into digital signals. In the late 1970s, Hewlett-Packard introduced the HP-
3300 series data-acquisition system. Through the A/D converters, the HP
system was able to collect chromatographic data from up to 60 detector chan-
nels. This represented the beginning of computerized chromatographic data
analysis and management [5].

Because the CDS used a dedicated hardware and wiring system, it was
relatively expensive to install. It was also difficult to scale up because more
minicomputers would be needed with increases in the number of users.
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Another drawback of the system was that the performance of the system
would degrade as the number of users increased.

The next generation of CDS systems did not appear until the start of the
personal computer (PC) revolution in the 1980s. The early PCs commercial-
ized by Apple and IBM were not very reliable or powerful compared with
today’s PCs. The operating systems were text based and difficult to use.
However, it was economically feasible to put them on the desktop in each
laboratory, and they were evolving rapidly to become more powerful in terms
of hardware and software. By the early 1990s, the PCs were reaching the
calculation speed of a minicomputer with a fraction of the cost. A graphics-
based operating system also made them more user-friendly.

Taking advantage of the PC revolution, a new generation of CDS appeared
on the market that utilized a client/server model. In the new CDS, the client
provided the graphical and user interface through a PC and was responsible
for some or most of the application processing. The server typically main-
tained the database and processed requests from the clients to extract data
from or update the database. This model was adopted widely in the industry
for almost a decade because of its scalability. It also facilitated the activities
of data sharing, method transfer, result review and approval, and trouble-
shooting at different laboratories and locations. It also overcame the problem
of scale-up. During this period of time, in parallel with the progress in CDS,
chromatography itself was developing rapidly. Instrumentation had adopted
modular design so that each functional part became more reliable and ser-
viceable. Progress in microelectronics and machinery made the solvent deliv-
ery pump more accurate and reproducible. The accuracy and precision of auto
samplers also were significantly improved. Compared with the time when
chart recorders or integrators were used, the fully automated HPLC could
now be programmed to run for days and nights nonstop. Results could
also be accessed and processed remotely. With the help of sophisticated
CDS, chromatography finally established its dominance in pharmaceutical
analysis.

As instrumental analysis played an increasingly important part in pharma-
ceutical development, an ever-larger percentage of the data in Good Manu-
facturing Practice and/or Good Laboratory Practice (GMP/GLP) studies
were captured and stored electronically. As CDS became more sophisticated,
new functions such as electronic approval became available. However, the
legal issues related to electronic signatures needed to be addressed and rec-
ognized by the regulatory authorities. To clarify the confusion and provide
clear guidelines regarding electronic data, the FDA issued 21 CFR Part 11
rules to address concerns regarding the electronic media of scientific data.
With respect to the FDA’s expectations, the CDS operated with the client/
server model had a significant drawback. In the client/server model, the client
must retain parts of the applications. To fulfill the requirements of system
qualification, performance verification, and validation, one must validate not
only the server, but also each PC used by the client. This created an enormous
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burden for the customer, which resulted in the adoption of a new operating
model of server-based computing.

With server-based computing, the applications are deployed, managed,
supported, and executed on a dedicated application server. Server-based com-
puting uses a multiuser operating system and a method for distributing the
presentation of an application’s interface to a client device. There are no
software components installed on the client PC. The client’s PC simply acts
as the application server’s display. CDS using this model significantly reduced
the total cost in implementation and maintenance and significantly increased
its compliance with regulatory guidelines.

2.2.3 The Modern CDS

Use of server-based computing is only one of the important features of the
modern CDS. The other two important features are the use of embedded data
structure and direct instrument control. The earlier generations of CDS used
a directory file structure, meaning that the raw data and other files such as
the instrument method and data processing method were stored at separate
locations. There would either be no connections or only partial connections
between these files. The most significant drawback of this type of file manage-
ment was the potential for methods and raw data to be accidentally over-
written. To prevent this from happening, the raw data and result files must be
locked. If in some cases the locked data needed to be reprocessed, the system
administrator must unlock the files. The embedded relational database has
been widely used for LIMS and is a much better file structure. The embedded
data structure can be used to manage not only chromatographic data, but also
all aspects of the CDS, including system security and user privileges. The
embedded data structure maintains all information and changes by date- and
time stamping them to prevent accidental overwriting of raw data and method
files. It controls versions of all processed result files, acquisition methods,
processing methods, and reporting methods to provide full audit trails. All
of the metadata (acquisition, process, and reporting methods) related to a
specific result are tied together.

Direct instrument control (or the lack of it) was an important issue for the
earlier version of CDS. The scheme of connecting the detector channels
through A/Ds to CDS worked well in analytical laboratories across the phar-
maceutical industry. The scheme provided enough flexibility so that the CDS
could collect data from a variety of instruments, including GC, HPLC, IC,
SFC, and CE. It was equally important that the CDS could be connected to
instruments that were manufactured by different vendors. It was not uncom-
mon to find a variety of instruments from different vendors in a global phar-
maceutical research company. The disadvantage of this scheme was that the
instrument metadata could not be linked to the result file of each sample
analyzed. It could not be guaranteed that the proper instrument parameters
were used in sample analysis. Another need came from the increased use of
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information-rich detectors such as photodiode array detectors and mass spec-
trometer (MS) detectors. To use these detectors in the GMP/GLP environ-
ment, data security had to be ensured. The data from these detectors could
not be collected by CDS through A/Ds. This represented an important gap
in reaching full compliance of the 21 CFR Part 11 regulations. In addition,
the use of A/D inevitably introduced additional noise and nonlinearity. Direct
instrument control would avoid these problems. To address these problems,
the instrument vendors had to cooperate by providing each other with the
source codes of their software. Some progress has been made in this area. A
good example is that of the CDS Empower (Waters), which now can directly
control HPLC and GC equipment manufactured by Agilent. Table 2.1 lists
several of the major CDS vendors and current contact information.

2.2.4 Summary

CDS have certainly served the pharmaceutical industry well by being continu-
ously improved. CDS have helped the pharmaceutical industry to increase
efficiency and productivity by automating a large part of pharmaceutical
analysis. But CDS still have room for improvement. So far the main focus of
CDS has been on providing accurate and reliable data. The current regulatory
trend in the pharmaceutical industry is to shift from data-based filings to
information-based filings, meaning that the data must be analyzed and con-
verted into information. This implies that enhancements in data searching
and trend analysis capabilities will be desirable in the future.

2.3 LABORATORY INFORMATION MANAGEMENT
SYSTEMS (LIMS)

Laboratory information management systems, or LIMS represent an integral
part of the data management systems used in preclinical development. LIMS

TABLE 2.1 Major CDS Vendors and Their Products

Product Vendor URL

Atlas Thermo Electron Co. www.thermolabsystems.com
Cerity Agilent Technologies, Inc. www.agilent.com
Chromeleon Dionex Co. www.dionex.com

Class VP Shimadzu Scientific Inst. www.shimadzu.com
Empower Waters Co www.waters.com

EZChrom Elite Scientific Software, Inc WWW.SCISW.com

Galaxie Varian Inc. WWwWw.varianinc.com

TotalChrom Perkin-Elmer, Inc. www.perkinelmer.com
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are needed partly because CDS cannot provide enough data management
capability. For example, CDS cannot handle data from nonchromatographic
tests.

Another important use of LIMS is for sample management in preclinical
development, more specifically in drug substance and drug product stability
studies. Stability studies are very labor intensive, and the results have an
important impact on regulatory filings. LIMS are designed to automate a
large part of these stability studies including sample tracking, sample distribu-
tion, work assignment, results capturing, data processing, data review and
approval, report generation, and data archiving, retrieving, and sharing.

2.3.1 LIMS Hardware and Architectures

Commercial LIMS appeared on the market in the early 1980s. These oper-
ated on then state-of-the-art minicomputers such as the 16-bit Hewlett-
Packard 1000 and 32-bit Digital VAX system. By the late 1980s, several
DOS-based PC LIMS operating on the primitive PC network were available.
By the early 1990s, most LIMS started using commercial relational database
technology and client/server systems, which operated on UNIX or the new
Windows NT platform. The most advanced LIMS utilize server-based archi-
tecture to ensure system security and control.

There are four main types of architectural options when implementing
LIMS [6]. The first is the LAN (local area network) installation. In a multiple-
site situation and through the standard client/server setup, the application
would be hosted separately on a server at each site connected to PC clients.
In this setup, the LIMS are installed on both the clients and the server. System
administration is required at each facility.

The second type is the WAN (wide area network) installation. In this setup
the LIMS take advantage of telecommunication technology to cover a great
distance. The setup can also be used to connect disparate LANSs together. In
this configuration, the LIMS are installed on both the clients and a central
server. The third type is the so-called “centrally hosted thin client installa-
tion”. For this setup, system administration is managed at a corporate center,
where the LIMS are hosted and distributed via a WAN or the Internet with
a virtual private network (VPN). The last and also the newest type is the ASP
(Application Service Provision provider)-hosted installation. In this setup,
the LIMS are hosted on a centrally managed server form and maintained by
third-party specialists. Users access the LIMS with any Internet-connected
PC with a standard Web browser.

2.3.2 Different Types of LIMS

The implementation of LIMS requires a significant amount of investment in
capital money and manpower. There are large numbers of established vendors
that provide commercial LIMS with a similar range of core functionality, but
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few of them are dedicated to the pharmaceutical industry because of the
market size (Table 2.2). The following discussion is not intended to categorize
different types of LIMS; rather, we briefly point out the most obvious char-
acteristics of different LIMS. LIMS may possess certain distinctive features,
but their core functionalities may be very similar.

Customer-tailored LIMS—In an implementation of this type of LIMS, the
customer purchases a generic product from the vendor. The vendor and cus-
tomer will work together over a period of time to configure the software to
adapt it to meet end user needs. This usually involves extensive programming,
which can be performed by the trained end user or dedicated supporting
personnel on the customer side. Programming support is usually needed for
the entire life of the LIMS to accommodate changes in development projects.
The advantage is that the LIMS functions relatively closely to the business
practices of the customer and the system can be tailored to fit the needs of
the customer’s development projects. The disadvantage is that it takes con-
siderable resources to implement and maintain the LIMS.

Preconfigured LIMS—This LIMS does not require extensive customer
programming. To meet specific needs of end users, the vendors provide a
comprehensive suite of configuration tools. These tools allow end users to add
new screens, menus, functions, and reports in a rapid and intuitive manner.
The tools also allow the LIMS to be more easily integrated with other busi-
ness applications such as document processing, spreadsheets, and manufac-
turing systems.

Specialized LIMS—This type of LIMS is based on the fact that certain
laboratories have a range of well-defined processes (e.g., stability testing) that
are performed according to a specific set of regulations and by using well-
established tests. The tests are done according to industry-wide accepted
protocols. Specialized LIMS are tailor-made for certain types of laboratories.
Therefore the performance can be optimized for clearly defined work
process.

TABLE 2.2 Selected LIMS Vendors Specialized in Pharmaceutical Industry

Product Vendor URL

Debra LabLogic Systems Ltd www.lablogic.com
Q-DIS/QM Waters www.waters.com

QC Client Agilent www.agilent.com
WinLIMS QSI www.lims-software.com
ACD/SLIMS Advanced Chemistry Development www.acdlabs.com
V-LIMS Advance Technology Corp www.vetstar.com
VET/HEX HEX Laboratory Systems www.hexlab.com
BioLIMS PE Informatics www.pebiosystems.com

LabCat Innovative Programming Assoc. www.labcat.com
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LIMS as rented service—The application service provision provider (ASP)
is a means of obtaining access to software applications without the need to
acquire expensive licenses and hardware or employ high-cost support
resources [7]. The application is hosted on a third-party site with system
maintenance, backup, and recovery provided by a third party. Products and
services can be rented for a contract period on a fixed cost per user/per month
basis. The advantages of obtaining LIMS in this fashion include reduced cost
in initial investment and reduced requirement of resources for maintaining
the LIMS. The continued security and integrity of the data transferred over
the Internet is a major concern for this type of LIMS.

2.3.3 Implementation of LIMS

Because of their complexity, implementing LIMS usually is a traumatic
process. Good communication and planning can reduce the level of turmoil
caused by LIMS [8].

Planning (defining expectations) is the first step in a lengthy process of
acquiring the LIMS. The LIMS vendor and customer have to work very
closely at this stage. A series of meetings must be held between the LIMS
vendor and potential end users and laboratory supervisors. The business
processes and sample flows need to be mapped and documented to prepare
for future system configuration. For each type of sample to be tracked by the
LIMS, the attributes related to the samples must be defined. Even the data
format has to be decided so that it is consistent with existing procedures and
practices of the organization. When the expectations are compiled and ana-
lyzed, it is important to balance the needs of the end users from different
disciplines because they may have different concerns, priorities, and require-
ments. Mistakes made in the planning stage can be very costly later on over
the life span of the LIMS.

The LIMS for GMP/GLP use must be validated [10]. Validation includes
design qualification, installation qualification, operational qualification, per-
formance qualification, and final documentation. Each of these steps needs
good planning and documentation. The compliance function (QA) of the
development organization will need to be involved in reviewing and approv-
ing the plan and in the audit of the final report. During validation, the system
is tested against normal, boundary value, and invalid data sets. Invalid data
should be identified and flagged by the software. Dynamic “stress” tests
should also be done with large data sets to verify whether the hardware is
adequate. The validation work usually is conducted on a test system that is
an exact copy of the production system to protect the data integrity of the
production system.

One of the major undertakings during LIMS implementation is user train-
ing, which should cover not only the LIMS itself but also the standard operat-
ing procedures (SOPs) that govern use, administration, training, and other
aspects of the LIMS. The training should be conducted on the test system
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instead of the production system. The trainers should keep in mind that the
LIMS is one of the less user-friendly systems for end users because of its
complexity and rigid audit trail setups. Adequate support after training and
rollout may have a long-lasting impact on the success of the new LIMS.

2.3.4 Summary

LIMS is a complex system and requires significant capital and manpower
investment. Selection of the right LIMS product is a daunting task, and the
outcome can have a significant impact on the business.

Compared with CDS, LIMS has more core functionalities in managing
laboratory data and other electronic information. It also has much stronger
search and reporting capabilities. It is interesting to point out that some LIMS
vendors have started to use the term “data mining” in their product introduc-
tion brochures. This means that they are aware of a new trend in the phar-
maceutical industry, especially in preclinical development, namely, toward a
better understanding and control of data in pharmaceutical manufacturing.
The FDA has issued a new Guidance on Process Analytical Technologies
(PAT), [9] promoting the concepts of “quality by design,” “process under-
standing,” and “real-time assurance of quality.” These concepts may have a
profound impact on how pharmaceutical development is conducted in the
future. To put these concepts into practice will mean an explosion in the
amount of scientific data, not only through standard testing such as HPLC
and GC but also through nonstandard technologies such as near-infrared
spectroscopy, Raman spectroscopy, various particle size analysis techniques,
etc. More importantly, the data will need to be analyzed with new (e.g., che-
mometrics) tools to generate process/product information and knowledge.
The current LIMS are not designed to handle large amounts of spectral data.
We will have to see whether the core functionalities of LIMS can be expanded
or totally new information management systems will have to be developed to
meet the new challenges.

2.4 TEXT INFORMATION MANAGEMENT SYSTEMS (TIMS)

The name “text information management system” is not as widely used as the
name “laboratory information management system.” Nevertheless, a text
document management system is essential in preclinical development because
huge numbers of text documents and other related information such as images,
drawings, and photographs are generated in the area. All these documents
and information are considered intellectual property and require protection
and easy access.

One of the characteristics of the pharmaceutical industry is large quantities
of paperwork, particularly in areas where GMP/GLP are strictly enforced.
The slogan “documentation, documentation, and documentation . . .” is always
in the mind of laboratory scientists.
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The scientists in preclinical development spend quite a large percentage of
their working time writing compound documents (reports). The report gen-
eration, review, approval, filing, and retrieval process can be very inefficient
or even bureaucratic in a pharmaceutical company, partly because of the strict
regulations. The following scenario could be seen often as recently as the late
1980s: The scientist would prepare his report with one type or another of text
and graphic software, often through multiple cut-and-paste procedures to
include pictures or images. Then the scientist would make hard copies of the
report for review by managers and the department head. After all the correc-
tions were made, the scientist would print out another copy for the QA auditor
for auditing (this is only done for the documents used for submission). It could
take months before the report was finally ready to be filed in the company
record center, where photocopies and microfilms were made and indexing
took place. When an end user needed a copy of the report, he would have to
make a request to the record center for a hard copy.

When TIMS is used in today’s workflow, the scientist can use a report
template to facilitate report writing. Some cut-and-paste procedures are still
needed to include data and figures. After the draft report is completed, the
scientist can send the reviewers an electronic link for the document. The
reviewers can review the document and make changes and corrections with
the “tracking change” function. When the review is completed, the author
can choose to accept the changes or deny them. If auditing is needed, the
same process can be used. The finalized document is issued within the TIMS
by adding an issue date and signatures, if necessary, and converting into an
unalterable PDF file. Future changes made after issuance are captured
through version control. End users can also access the issued document elec-
tronically and remotely. Comparison of the new process vs. the old one has
demonstrated the advantages of TIMS.

2.4.1 Documentation Requirements in Preclinical Development

In preclinical development, the GMP/GLP regulations are enforced not only
for scientific data but also for text documents. This section discusses several
types of controlled text documents used in preclinical development. Most of
these documents are managed by the fully validated TIMS.

Product specification documents and analytical test methods—In preclini-
cal development, these are important documents and they evolve along with
the development phases. Drug substances and products for clinical trials are
tested based on these documents, and so are the stability samples. It is critical
to ensure that the analyst will perform the right tests against the right speci-
fications with the correct version of the test method. Therefore a mechanism
must be in place to control these documents. This can be done manually or
with TIMS. A manually controlled system would require the analyst to sign
out hard copies of the documents from a central location. After the testing is
done, the analyst would have to return these controlled documents to the



TEXT INFORMATION MANAGEMENT SYSTEMS (TIMS) 63

central location. Sometimes mistakes can be made with regard to the correct
documents, and this will result in repetition and unnecessary investigation. If
TIMS is implemented, the analyst can obtain the documents from the secured
database and then the documents should be destroyed after the test is
completed.

Standard operating procedures (SOPs)—The SOPs are controlled in a way
similar to that of specification documents and analytical methods. It must be
ensured that the correct versions of the SOPs are accessed and used by the
scientists. After use, the hard copies should be destroyed and disposed of
properly. An added requirement is that the SOPs should be accessible during
working hours without interruption. Hard copies should be available at a
manageable location so that the SOPs are available when the electronic system
is down.

Research reports—Research reports such as stability reports, method vali-
dation and transfer reports, and pharmaceutical development reports are key
documents used for NDA/MA A filings. These documents are strictly version
controlled.

Laboratory notebooks—It may be debatable to consider laboratory note-
books as text documents, but they should be mentioned here because of their
importance in preclinical development. Laboratory notebooks are used to
record experimental procedures, observations, raw data, and other important
information. Although laboratory notebooks are rarely used for submission
to regulatory agencies directly, they are available for inspection by the author-
ities in the Preapproval Inspection (PAI) and other GMP/GLP-related
inspections. Currently, most of the major pharmaceutical companies still use
paper-based laboratory notebooks. Electronic-based notebook systems are
being developed and commercialized, which are discussed in Chapter 9.

2.4.2 Current TIMS Products

Various so-called Enterprise Content Management (ECM) systems are com-
mercially available that can meet different end user requirements (Table 2.3).
TIMS used in preclinical text document management usually is a simplified
version of ECM. At the highest enterprise platform level, ECM vendors
include Documentum, FileNet, Interwoven, Stellent, and Vignette. At a lower
level, the upper-tier products are provided by Day Software, FatWire, and
IBM. For less costly products, there are Ingeniux, PaperThin, RedDot Solu-
tions, and Serena Software. It should also be pointed out that the cost of
acquiring and maintaining a fully validated TIMS is much higher than that
of a non-GMP/GLP system. Therefore many of the non-GMP/GLP docu-
ments in early-phase development are managed with nonvalidated TIMS.

2.4.3 Summary

TIMS has helped the pharmaceutical industry to improve efficiency in man-
aging business-critical text documents. However, it is still a time-consuming
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TABLE 2.3 Selected TIMS Vendors and Their Products

Product Vendor URL
Documentum Web Publisher Documentum www.documentum.com
P8 WCM FileNet www.filenet.com
TeamSite Interwoven www.interwoven.com
Stellent Content Management Suite  Stellent www.stellent.com

V7 Content Management Suite Vignette www.vignette.com
Communique Day Software www.day.com

Content Server FatWire www.fatwire.com
Workplace WCM IBM www.ibm.com
Mediasurface Mediasurface www.mediasurface.com
Ingeniux CMS Ingeniux www.ingeniux.com
CommonSpot PaperThin www.paperthin.com
RedDot CMS RedDot Solutions ~ www.reddot.com
Collage Serena Software WWwWw.serena.com

process to write, review, audit, approve, and publish text documents for sub-
mission. The pharmaceutical industry is working toward making submissions
electronically. However, this may take time, and the industry may need many
changes in business practices to reach the goal.
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3.1 INTRODUCTION

The new major challenge that the pharmaceutical industry is facing in the
discovery and development of new drugs is to reduce costs and time needed
from discovery to market, while at the same time raising standards of quality.
If the pharmaceutical industry cannot find a solution to reduce both costs and
time, then its whole business model will be jeopardized: The market will
hardly be able, even in the near future, to afford excessively expensive drugs,
regardless of their quality.
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In parallel to this growing challenge, technologies are also dramatically
evolving, opening doors to opportunities never seen before. Some of the best
examples of new technologies available in the life sciences are microarray
technologies or high-throughput-screening. These new technologies are cer-
tainly routes that all pharmaceutical companies will follow. But these new
technologies are themselves expensive, time is needed to master them, and
success is in any case not guaranteed. So, by mere application of new technol-
ogy costs have not been reduced, and global cycle time continues to extend
while the probability of success remains unchanged.

One key consideration that should be kept in mind is that the whole para-
digm for discovering and developing new drugs has not changed at all in the
mind of the scientists in the field. The new technologies have been integrated
to do the same things as before, but faster, deeper, smaller, with more automa-
tion, with more precision, and by collecting more data per experimental unit.
However, the standard way to plan experiments, to handle new results, to
make decisions has remained more or less unchanged, except that the volume
of data, and the disk space required to store it, has exploded exponentially.

This standard way to discover new drugs is essentially by trial and error.
The “new technologies” approach has given rise to new hope in that it has
permitted many more attempts per unit time, increasing proportionally,
however, also the number of errors. Indeed, no breakthrough strategy has
been adopted to drastically increase the rate of successes per trial and to
integrate the rich data into an evolving system of knowledge accumulation,
which would allow companies to become smarter with time. For most new
projects initiated, scientists start data production from scratch: The lessons
they have learned, or they think they have learned, from previous projects
are used only as a general cultural influence; they do not materially determine
the continuing development of successive projects.

This possibly slightly pessimistic portrait of the current status of research
in the life sciences contrasts sharply with the progression of technology and
development changes achieved in other industrial areas. As an example, con-
sider aeronautics. New airplanes today are completely conceived, designed,
optimized, and built with computer models (in fact mathematical and statisti-
cal models), through intensive simulations. Once a new plane is constructed,
it will almost surely fly on its first trial, even if fine-tuning may still be needed.
In this industry, each attempt produces one success. If we were to translate
the current paradigm of discovery and development of new drugs into aero-
nautics terms, we could think of many metallurgists with great personal
expertise in metallurgy, who, using vague notions of aerodynamics and resis-
tance of materials, assemble large numbers of “candidate planes,” each a
complex arrangement of metal pieces. Each “candidate plane” is then tested
under real conditions, by attempting to fly it from a number of likely take-off
surfaces and in different meteorological conditions: The very few that do not
crash are finally called “planes.” The configuration of the many candidate
planes that crashed is examined, so as to avoid repeating the same kinds of



INTRODUCTION 69

error in the future, but each metallurgist has his or her own way to read the
facts and draw conclusions for future assemblage instead of consulting or
hiring a specialist in aerodynamics or materials. The theory here would be
that a plane is, finally, a large collection of pieces of metal, all assembled
together! So why would other kinds of expertise be needed, besides those
closely linked to metallurgy? In this vision of the business, the more new
planes one wants to launch, the more metallurgists one needs, and the process
could even be accelerated if one could buy new-technology machines that
automatically build and assemble large numbers of different pieces of
metal.

In the aeronautics industry, when an experiment is envisaged, for example,
testing the resistance of a particular piece, the goal of the experiment is first
of all that of verifying and refining the computer model of that piece to answer
a fundamental question: Does the model behave like the real piece, or what
changes are needed to make the model behave like the piece? Once ade-
quately tuned, the model forecasts will then be used to understand how to
optimize the resistance of the piece itself, until the next comparison between
model and reality is done. After a few such iterations, the final piece is fully
checked for quality purposes and will almost surely be found to be the right
one for the job at hand. Translating the pharmaceutical approach to an experi-
ment into aeronautics terms produces a somewhat different picture: A piece
is built, which should satisfy quality checks, and an experiment is done to
evaluate the resistance of the piece. If the test fails, as it is very likely to do,
the piece is thrown away and the metallurgist is asked to propose a new piece
by next week.

This caricaturized image of the process of discovery and development of
new drugs has been drawn to highlight the pivotal role that models (simplified
mathematical descriptions of real-life mechanisms) play in many R&D activi-
ties. In the pharmaceutical industry, however, in-depth use of models for
efficient optimization and continuous learning is not generally made. In some
areas of pharmaceutical research, like pharmacokinetics/pharmacodynamics
(PK/PD), models are built to characterize the kinetics and action of new
compounds or platforms of compounds, knowledge crucial for designing new
experiments and optimizing drug dosage. Models are also developed in other
areas, as for example in medicinal chemistry with QSAR-related models.
These can all be defined as mechanistic models, and they are useful. But in
these models, the stochastic noise inherent in the data, the variability that
makes biology so much more different from the physical sciences, is not as a
general rule appropriately taken into account.

On the other side, many models of a different type are currently used in
the biological sciences: These can be envisaged as complicated (mathemati-
cal) extensions of commonsense ways to analyze results when these results
are partially hidden behind noise, noise being inescapable when dealing with
biological matters. This is the area currently occupied by most statisticians:
Using empirical models, universally applicable, whose basic purpose is to
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appropriately represent the noise, but not the biology or the chemistry, stat-
isticians give whenever possible a denoised picture of the results, so that field
scientists can gain better understanding and take more informed decisions.
In the ideal case, as in regulated clinical trials, the statistician is consulted up
front to help in designing the experiment, to ensure that the necessary denois-
ing process will be effective enough to lead to a conclusion, positive or nega-
tive. This is the kingdom of empirical models.

The dividing line between empirical models and mechanistic models is not
as clear and obvious as some would pretend. Mechanistic models are usually
based on chemical or biological knowledge, or the understanding we have of
chemistry or biology. These models are considered as interpretable or mean-
ingful, but their inherent nature (nonlinearity, high number of parameters)
poses other challenges, particularly once several sources of noise are also to
be adequately modeled. For these reasons empirical approaches have been
largely preferred in the past. Today, however, the combination of mathemat-
ics, statistics, and computing allows us to effectively use more and more
complex mechanistic models directly incorporating our biological or chemical
knowledge.

The development of models in the pharmaceutical industry is certainly one
of the significant breakthroughs proposed to face the challenges of cost,
speed, and quality, somewhat imitating what happens in the aeronautics
industry. The concept, however, is not that of adopting just another new tech-
nology, “modeling.” The use of models in the experimental cycle changes the
cycle itself. Without models, the final purpose of an experiment was one single
drug or its behavior; with the use of models, the objective of experiments will
be the drug and the model at the same level. Improving the model will help
understanding this and other drugs and the experiments on successive drugs
will help improving the model’s ability to represent reality. In addition, as
well known in the theory of experimental design, the way to optimally con-
ceive an experiment depends on the a-priori model you have. If you have very
little a priori usable information (i.e., a poor model), then you will need many
experiments and samples, making your practice not very cost effective. This
is a bonus few realize from having models supporting the cycle: The cost,
speed, and effectiveness of studies can be dramatically improved, while the
information collected from those optimized experiments is itself used to
update the model itself. Modeling is the keystone to installing a virtuous cycle
in the pharmaceutical industry, in order to successfully overcome approach-
ing hurdles. This, of course, requires us to network with or to bring on board
modelers that are able to closely collaborate with confirmed drug hunters.

Using the mathematically simple example of Gompertz tumor growth, this
chapter discusses the relationship between empirical and mechanistic models,
the difficulties and advantages that theoretical or mechanistic models offer,
and how they permit us to make safe decisions and also to optimize experi-
ments. We believe there is an urgent need to promote biomathematics in drug
discovery, as a tool for meaningfully combining the scientific expertise of the
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different participants in the discovery process and to secure results for con-
tinuing development. The key is to move, whenever meaningful, to mechanis-
tic models with adequate treatment of noise.

3.2 DESCRIPTIVE VERSUS MECHANISTIC MODELING

According to Breiman [1], there are two cultures in the use of statistical
modeling to reach conclusions from data. The first culture, namely, the data
modeling culture, assumes that the data are generated by a given stochastic
data model, whereas the other, the algorithmic modeling culture, uses algo-
rithmic models and treats the data mechanism as unknown. Statistics thinks
of the data as being generated by a black box into which a vector of input
variables x (independent variable) enter and out of which a vector of response
variables y (dependent variable) exits. Two of the main goals of performing
statistical investigations are to be able to predict what the responses are going
to be to future input variables and to extract some information about how
nature is associating the response variables to the input variables.

We believe that a third possible goal for running statistical investigations
might be to understand the foundations of the mechanisms from which the
data are generated or going to be generated, and the present chapter is
focused on this goal.

To understand the mechanism, the use of modeling concepts is essential.
The purpose of the model is essentially that of translating the known proper-
ties about the black box as well as some new hypotheses into a mathematical
representation. In this way, a model is a simplifying representation of the
data-generating mechanism under investigation. The identification of an
appropriate model is often not easy and may require thorough investigation.
It is usual to restrict the investigation to a parametric family of models (i.e.,
to a set of models that differ from one another only in the value of some
parameter) and then use standard statistical techniques either to select the
most appropriate model within the family (i.e., the most appropriate param-
eter value) with respect to a given criterion or to identify the most likely sub-
family of models (i.e., the most likely set of parameter values). In the former
case the interest is in getting point estimates for the parameters, whereas in
the latter case the interest is in getting confidence regions for them.

The way in which the family of models is selected depends on the main
purpose of the exercise. If the purpose is just to provide a reasonable descrip-
tion of the data in some appropriate way without any attempt at understand-
ing the underlying phenomenon, that is, the data-generating mechanism, then
the family of models is selected based on its adequacy to represent the data
structure. The net result in this case is only a descriptive model of the phe-
nomenon. These models are very useful for discriminating between alterna-
tive hypotheses but are totally useless for capturing the fundamental
characteristics of a mechanism. On the contrary, if the purpose of the mode-



72 STATISTICAL MODELING IN RESEARCH AND DEVELOPMENT

ling exercise is to get some insight on or to increase our understanding of the
underlying mechanism, the family of models must be selected based on rea-
sonable assumptions with respect to the nature of the mechanism. As the
fundamental characteristics of the mechanism are often given in terms of
rates of change, it is not unusual to link the definition of the family to a system
of differential equations. As the mechanisms in biology and medicine are
relatively complex, the systems of differential equations used to characterize
some of the properties of their behavior often contain nonlinear or delay
terms. It is then rarely possible to obtain analytical solutions, and thus numer-
ical approximations are used.

Whenever the interest lies in the understanding of the mechanisms of
action, it is critical to be able to count on a strong collaboration between sci-
entists, specialists in the field, and statisticians or mathematicians. The former
must provide updated, rich, and reliable information about the problem,
whereas the latter are trained for translating scientific information in mathe-
matical models and for appropriately describing probabilistic/stochastic com-
ponents indispensable to handling the variability inherently contained in the
data generation processes. In other words, when faced with a scientific
problem, statisticians and biomathematicians cannot construct suitable models
in isolation, without detailed interaction with the scientists. On the other
hand, many scientists have insufficient mathematical background to translate
their theories into equations susceptible to confrontation with empirical data.
Thus the first element of any model selection process within science must be
based on close cooperation and interaction among the cross-functional team
involved.

When there is a relative consensus about the family of models to use, the
data must be retrieved from available repositories or generated with a well-
designed experiment. In this chapter, animal tumor growth data are used for
the representation of the different concepts encountered during the develop-
ment of a model and its after-identification use. The data represent the tumor
growth in rats over a period of 80 days. We are interested in modeling the
growth of experimental tumors subcutaneously implanted in rats to be able
to differentiate between treatment regimens. Two groups of rats have received
different treatments, placebo and a new drug at a fixed dose. So in addition
to the construction of an appropriate model for representing the tumor
growth, there is an interest in the statistical significance of the effect of treat-
ment. The raw data for one subject who received placebo are represented as
open circles in Figure 3.1. For the considered subject, the tumor volume grows
from nearly 0 to about 3000 mm?®.

A first evaluation of the data can be done by running nonparametric sta-
tistical estimation techniques like, for example, the Nadaraya—Watson kernel
regression estimate [2]. These techniques have the advantage of being rela-
tively cost-free in terms of assumptions, but they do not provide any possibil-
ity of interpreting the outcome and are not at all reliable when extrapolating.
The fact that these techniques do not require a lot of assumptions makes them
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Figure 3.1 Time course of implanted tumor volume for one experimental subject
(Control) and associated fitted model curves (solid line, exponential model; dashed
line, nonparametric kernel estimate).

relatively close to what algorithm-oriented people try to do. These techniques
are essentially descriptive by nature and are useful for summarizing the data
by smoothing them and providing interpolated values. The fit obtained by
using the Nadaraya—Watson estimate on the set of data previously introduced
is represented by the dashed line in Figure 3.1. This approach, although often
useful for practical applications, does not quite agree with the philosophical
goal of science, which is to understand a phenomenon as completely and
generally as possible. This is why a parametric mechanistic modeling approach
to approximate the data-generating process must be used.

When looking at the presented data, it would be reasonable, as a first
approximation, to imagine using a parametric family of models capturing the
potential exponential growth of the tumor volumes. Although certainly rea-
sonable from a physiological point of view, the selection of the exponential
family is, at this stage, only based on the visual identification of a specific
characteristic exhibited by the data, in this case, exponential growth. The
exponential parametric family is mathematically fully characterized by the
family of equations V(f) = o.exp(Af). A particular model is fully specified by
fixing the values for its two parameters oo and A. Note that it is particularly
important to quantitatively study the change in behavior of the different
models in terms of the parameters to have a good understanding of con-
straints existing on the parameters. In this case, for example, both parameters
must be positive. To fit the model on the observed data, statistical techniques
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must be applied. These techniques attempt to optimize the selection of the
parameter value with respect to a certain criterion. The ordinary least-squares
optimization algorithm (see Section 3.3) has been used to get parameter
estimates. Although this model has been selected essentially on the basis of
the observed data structure, it is possible to try to give an interpretation of
the model parameters. However, the interpretation of the parameters is only
done after fitting the curve, possibly because of similar experiences with the
same model used on other phenomena, which generate similar types of data.
Up to this point, the interpretation is not at all based on known scientific
properties of the data-producing mechanism built into the model. Note that
again a similar a posteriori interpretability search is obviously not possible in
the case of a nonparametric fit. For the exponential family of models, the first
parameter might be interpreted as the tumor volume at time zero whereas
the second might likely represent the tumor growth rate. The problem with
the model identified from the exponential family is that mathematically the
tumor growth will continue up to infinity, which from a physiological point
of view is very difficult to accept and to justify. In other words, the very form
of the mathematical model as such, independently of any recorded data, is
incompatible with physiology as we know it. The mathematical analysis of the
model behavior, abstracting from any recorded data, should be part of any
serious modeling effort directed to the understanding of a physiological
mechanism and should precede the numerical fitting of the model to the avail-
able data. This qualitative model analysis seeks to establish, first of all, that
the model equations do admit a solution (even if we cannot explicitly derive
one) and that this solution is unique. Secondly, the solution must have a set
of desirable properties that are typical of the behavior of physiological systems,
for example, they are bounded, positive, of bounded variation, stable with
respect to the parameters and to the initial conditions. Finally, these solutions
must exhibit or fail to exhibit some characteristic patterns, like oscillations
whose period may depend on some parameter, or, more interestingly, may
become established or change regime depending on some “bifurcation”
parameter value. As noted before, in the absence of the possibility of actually
deriving an explicit solution, given the complexity of the differential formula-
tion, qualitative analysis seeks to characterize the unknown analytical solu-
tion, leaving to numerical techniques the actual computation of a close
approximation to the unknown solution.

After having used a (simple) model formulation with some plausible
meaning and a behavior matching the observed data structure, the next step
in the quest for a good model is to go back to the selection of an appropriate
family, this time operating a selection not only with reference to the apparent
data structure but also incorporating some known or presumed quantitative
properties of the mechanism under investigation. The investigation of tumor
growth on which we concentrate in this chapter falls in fact into the broad
topic of growth curve analysis, which is one of the most common types of
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studies in which nonlinear regression functions are employed. The special
characteristics of the growth curves are that the exhibited growth profile
generally is a nonlinear function of time with an asymptote; that random
variability associated to the data is likely to increase with size, so that the
dispersion is not constant; and finally, that successive responses are measured
on the same subject so that they will generally not be independent [3]. Note
that different individuals may have different tumor growth rates, either inher-
ently or because of environmental effects or treatment. This will justify the
population approach presented in Section 3.7.

The growth rate of a living organism or tissue can often be characterized
by two competing processes. The net increase is then given by the difference
between anabolism and catabolism, between the synthesis of new body matter
and its loss. Catabolism is often assumed to be proportional to the quantity
chosen to characterize the size of the living being, namely, weight or volume,
whereas anabolism is assumed to have an allometric relationship to the same
quantity. These assumptions on the competing processes are translated into
mathematics by the following differential equation:

W) =pu(0) - an (1)

where LL(f) represents the size of the studied system in function of time. Note
that this equation can be reformulated as follows:

-~ Luo| 2] -1,

which has u(7) = o(1 + Kexp(=y(t — n))) " as general solution. The curve
represented by this last equation is commonly named the Richards curve.
When K is equal to one, the Richards curve becomes the well-known logistic
function. If the allometric factor in the relationship representing the catabo-
lism mechanism is small, that is, K tends to 0, then the differential equation

becomes
9 0) = oo 21

thanks to the relation exp(x)= lim (1+ Kx)l/ X The general solution of this

differential equation is now given by W(f) = aexp(—exp(=y(t — 1))), and is
called the Gompertz curve. Note that, contrary to the logistic function, the
Gompertz curve is not symmetric about its point of inflection. The Gompertz
growth curve is certainly the principal model used in the analysis of the time
courses of tumor volume growth. The model can be reparameterized as
follows:
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av

- (0=aV(O)-bV(O)logVX). V(O)=V;

where V [mm’] is the volume of the tumor, ¢ [days] is time, a [days™'] is the
rate of growth, and b [days™] is the rate of degradation. The parameter vector
0 = (a, b, V)" will belong to some domain, 8 € ® c R?, where the T indicates
vector or matrix transposition, and V is the real line. With the new notation,
the solution of the differential equation is given by

V()= exp(% - (% —logV, ) exp(—bt)).

The diagram in Figure 3.2 shows the model for the parameter value 6* = (0.4,
0.04, 0.3)". From now on we will always indicate the parameter as 6 = (a, b,
V,)'. The sigmoidal behavior of the model is evident. The Gompertz curve
has an asymptote given by exp(a/b). This curve can in fact be thought of as
describing initial exponential growth that is increasingly damped as the size
increases, until it eventually stops. Indeed, this can be easily deduced by using
b’t* b bt

6 24

the Taylor expansion exp(—bt)=1-bt+ ... for the internal

exponential in the Gompertz solution:
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Figure 3.2 Example of Gompertz growth curve for parameter value 6* = (0.4, 0.04,
0.3)".
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V(t)= exp(g—(——logVo)exp )

Nexp(g—(——logv(,) (1- bt)

=V, exp((a —-b log VO) )
= acexp (M)

The different curves obtained by increasing the number of terms in the Taylor
expansion are represented in Figure 3.3 on top of the Gompertz curve itself.
The exponential growth model can thus be now justified not only because it
fits well the data but also because it can be seen as a first approximation to
the Gompertz growth model, which is endowed with a mechanistic interpreta-
tion, namely, competition between the catabolic and anabolic processes.

3.3 STATISTICAL PARAMETER ESTIMATION

Once the model functional form has been decided upon and the experimental
data have been collected, a value for the model parameters (point estimation)
and a confidence region for this value (interval estimation) must be estimated
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Figure 3.3 Approximations of the Gompertz growth curve based on Taylor expan-

sion for the internal exponential term.
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from the available data. We will follow as an example the application of the
principle to a real-life situation in which nine experimental subjects (rats)
have been inoculated in the ear with a small tumor. Five of the rats have not
been treated with any drug, whereas four have received a novel antitumoral
treatment. The goal of the experiment is, of course, that of verifying whether
the treatment is effective in reducing tumor growth rate.

Our first goal is to retrieve a good approximation of the true value 6* by
means of some operation on the sample of observations, the point estimate
of 0%

The heuristic reasoning is as follows. Suppose we were able to quantify
how good a parameter is with respect to the available data, that is, suppose
we were to obtain a value of merit as a function of data and parameters. The
data are given and cannot be changed, but we can change the presumed
parameter value so as to maximize the merit. Maximizing our merit function,
we would find the best possible parameter value for the given data. Instead
of a merit function it is usually more convenient to use a loss function, which
is the opposite of a merit function in that it quantifies how badly a parameter
value performs. We will then want to minimize our loss with respect to the
parameter to find the best possible parameter value. As a loss function, Carl
Friedrich Gauss between the late eighteenth and early nineteenth centuries
formalized the use of the sum of squared residuals [4]. In its simplest form,
the ordinary least squares criterion (OLS) prescribes as a loss function the
sum of the squared “residuals” relative to all observed points, where the
residual relative to each observed point is the difference between the observed
and predicted value at that point. Clearly, if the model resulting from a certain
parameter value tends to closely predict the actually observed values, then
the residuals will be small and the sum of their squares will also be small, so
the loss will be small. Conversely, a bad or unacceptable value of the param-
eter will determine a model that predicts values very far from those actually
observed, the residuals will be large and the loss will be large [3, 5, 6]. We
may suppose, in general, to have a nonlinear model with a known functional
relationship

yi = u(x;;0%) + &, E[g] =0, 6% € O, (3.1)

where y; is the ith observation, corresponding to a vector x; of independent
variables, where 6* is the true but unknown parameter value belonging to
some acceptable domain ©, where u is the predicted value as a function of
independent variables and parameter, and where ¢, are true errors (which we
only suppose for the moment to have zero mean value) that randomly modify
the theoretical value of the observation. We may rewrite the model in vector
form as

y=u(X, 0%) + ¢, E[e] =0, 0% € O. (3.1)
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Because the independent variable values are fixed for the problem, we may
simplify notation by looking at u as a function of the variable 8: From now
on we will therefore write u(X, 0) as u(0).

The ordinary least-squares estimate (OLSE) 8 of * minimizes (globally
over 0 € O)

S©)=[y-u®)] [y-u®)]=e"e=Y (yi-u)". (3.2)

Supposing D = Cov(g) to be known, we would possibly improve our estima-
tion procedure by weighting more those points of which we are more certain,
that is, those whose associated errors have the least variance, taking also into
account the correlations among the errors. We may then indicate with @
the weighted least-squares estimator (WLSE), which is the value of 0
minimizing

5(0) =[y-u(®)]" D [y -u(0)] =e'De, (3.3)

where e is the vector of “residuals” [y — u(0)].

In the case in which the errors are independent of each other their covari-
ances will be zero, and if they also have the same variance, then D = ¢°I,
with the constant ¢* being the common variance and I being the identity
matrix. In this case, the same 8 minimizing (Eq. 3.3) would also minimize
(Eq. 3.2) and the OLSE can therefore be seen as a particular case of the
WLSE.

For our sample application we assume that the points are measured with
independent errors and equal variance. We may thus fit the data points mini-
mizing e’e, after which we may estimate ¢” as s* = e’e/(n — 1).

To produce the needed model estimate u(t, ) at each time and for each
tested value of the parameter 6 we may be lucky and have an explicitly solv-
able model, so that we directly compute u, or less lucky, which is a more fre-
quent occurrence. In fact, instead of an explicit formula for u we often have
only a differential relation expressing the rate of change of u in time, given
some initial value u(0). In this case we compute the approximate value of
u(t, ) by numerical integration, with any one of a wide choice of algorithms,
such as for example a fixed-step fourth-order Runge—Kutta procedure, or a
more complicated variable-step, variable-order scheme [7, 8]. In our search
for the optimum parameter value, minimizing the loss function, we again may
use any one of a vast array of optimization schemes with varying require-
ments, convergence rates, and difficulty of implementation. Typically, either
a simplex algorithm (which does not require or depend on the numerical
computation of derivatives of the loss with respect to the parameters) or a
more efficient, derivative-based nonlinear nonconstrained quasi-Newton
variable metric optimization algorithm may be used [7], with a stopping cri-
terion based on the convergence of either loss function or parameter value.
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Sample fits of observed volumes at different times (open circles) and their
OLS-predicted time course (solid line) can be seen for a few of the subjects
in Figure 3.4, a—d; the OLS estimates of the parameter values for all subjects
are reported in Table 3.1.

Once we have obtained our point estimate, we can ask ourselves what
confidence we place in this estimate, how likely it would be, in real life, that
actual parameter values differ from the values we have estimated.

3.4 CONFIDENCE REGIONS

The standard way to answer the above question would be to compute the
probability distribution of the parameter and, from it, to compute, for example,
the 95% confidence region on the parameter estimate obtained. We would,
in other words, find a set of values I, such that the probability that we are
correct in asserting that the true value 0* of the parameter lies in Iy is 95%.
If we assumed that the parameter estimates are at least approximately nor-
mally distributed around the true parameter value (which is asymptotically
true in the case of least squares under some mild regularity assumptions),
then it would be sufficient to know the parameter dispersion (variance-
covariance matrix) in order to be able to compute approximate ellipsoidal
confidence regions.

However, it is not generally possible to compute exactly the dispersion of
the estimates in the case of nonlinear problems. What we can do is use
approximate expressions whose validity is good in a small neighborhood of
the true value of the parameter. In the present section we will assume that
the model is not too far from linearity around the optimum found.

Suppose D = Cov(e), known. Indicate with @ the weighted least-squares
estimator (WLSE), that is, let  minimize S(6) = [y — u(6)]"D™" [y — u(0)] =
e'De.

Expanding u in Taylor series around the true 6% and neglecting terms of

) we have
A 0=0*
6=[U.”D'U.] "UTD'e+0* We observe that the WLSE estimator 0
is approximately unbiased (in a small nelghborhood of 6%), and
Cov(8) =E((6-E(8)(6- E(8)) )=[ U."D(.]", where we have obvi-

ously denoted U.=a—u .
00145

If we believe that D = ¢ diag(u), that is, that errors are independent
and proportional to the square root of the predicted value, then D™ =
diag(1/u;)/c’, where we may further approximate this result by estimating

2
1
2 2

clz=s’= D D ;i ;iui) at the optimum.

second and hlgher order we may write (wr1t1ng U.=
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Figure 3.4a Observed (open circles), single-subject OLS-predicted (solid line), and
population estimation (L&B90)-predicted (dashed line) time-volume points for
subject 1 (Treated).
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Figure 3.4b Observed (open circles), single-subject OLS-predicted (solid line), and
population estimation (L&B90)-predicted (dashed line) time-volume points for
subject 4 (Treated).
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Gompertz: Subject 5, group Control
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Figure 3.4c Observed (open circles), single-subject OLS-predicted (solid line), and
population estimation (L&B90)-predicted (dashed line) time-volume points for
subject 5 (Control).
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Figure 3.4d Observed (open circles), single-subject OLS-predicted (solid line), and
population estimation (L&B90)-predicted (dashed line) time-volume points for
subject 8 (Control).
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TABLE 3.1 Single-subject OLS Parameter Estimates

Subject Treatment A b Vi

1 1 0.050225 3.11E-12 51.13972
2 1 0.047986 8.8E-09 59.89137
3 1 0.048241 6.3E-11 51.20751
4 1 0.056145 5.18E-11 59.00714
5 0 0.330552 0.038063 1

6 0 0.384246 0.038479 1.000004
7 0 0.287166 0.036333 14.94381

8 0 0.377056 0.04155 1

9 0 0.184559 0.019011 24.10613

It is now immediate to compute approximate confidence intervals for any
single parameter component from its estimated standard error. In Table 3.2,
the individual OLS estimation results for subject 9 are reported. Standard
errors for all parameter components have been computed as the square roots
of the diagonal elements of the parameter dispersion matrix. Parameter vari-
ability has also been expressed as coefficients of variation (percent size of
standard error with respect to the estimated value). From the correlation
matrix of parameter estimates it is evident how in our example the estimates
of parameters a and b are very highly correlated: This means that, in order
to explain the observed data set, if we entertain the hypothesis of a slightly
higher growth rate we must simultaneously accept a slightly higher death rate;
otherwise, the observations are no more compatible with the model.

It is interesting to see what shape the confidence regions take when we
consider more than one parameter component at the same time. In fact, the
high correlation between the estimates of a and b would indicate that we could
change them together, in the same direction, without greatly changing the
overall loss, but that altering their relative size would quickly cause major
departures of the model from the observations.

A first approach to the definition of the confidence regions in parameter
space follows the linear approximation to the parameter joint distribution that
we have already used: If the estimates are approximately normally distributed
around 0" with dispersion [U.” D' U.]”', then an approximate 100(1 — a)%
confidence region for 6* is

{el(1/p5*)(0-8) [urDU](0-8)< ., .

where p is the number of parameters, n the number of available independent
observations, and Fy is the critical value of the Fisher’s F-distribution at
the o critical level with p and (n — p) degrees of freedom. As this approxima-
tion is valid asymptotically, so the regions will cover the correct (1 — o) con-
fidence level asymptotically. For varying o, these confidence regions are
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TABLE 3.2 Complete Fit Results for Subject 9

R? 0.985944
Degrees of Freedom 16

Error Variance 15110.7
Error St.Dev. 122.926
Akaike Inform Crit 185.575
Schwartz B.1.C. 188.408

Hessian Matrix

bi_a bi_b bi_V,
bi_a 6.5029¢+006 —-4.1363e+007 2250.7
bi_b -4.1363e+007 2.6391e+008 —-14068
bi_V, 2250.7 -14068 0.86104

Parameter Dispersion Matrix

bi_a bi_b bi_V,
bi_a 0.0016129 0.00021734 —-0.66495
bi_b 0.00021734 2.9346e-005 —0.088646
bi_V; —-0.66495 —-0.088646 292.13

Parameter Correlation Matrix

bi_a bi_b bi_V,
bi_a 1 0.999 -0.96872
bi_b 0.999 1 -0.95739
bi_V, -0.96872 —-0.95739 1

Parameter Point Estimates, Standard Errors, and Coefficients of Variation

a =0.18456 + 0.040161 (21.76%)
b =0.019011 + 0.0054172 (28.495%)
Vi =24.106 + 17.092 (70.903%)

shaped like multidimensional ellipsoids, which are the contours of the asymp-
totic multivariate normal density function of 6. We may further approximate
this distribution by taking U. in place of U. (i.e., by computing the jacobian
at @ instead of 0%).

A second approach considers that the regions of equivalent parameter
values must enclose parameters for which the loss function is nearly the same
or at any rate less different than some threshold. In other words, the equiva-
lence regions should take the form {81S(0) < ¢ S(8)} for some appropriate
constant ¢ > 1. Note that in this case the shape of the regions would not neces-
sarily be ellipsoidal, or even convex: In fact, we might postulate in general
the existence of multiple minima surrounded by disjoint equivalence neigh-
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borhoods, the union of which would make up an equivalence region. More
commonly, regions of this type (called “exact” confidence regions) may be
distorted to a degree given by the nonlinearity of the model around the
optimum. If we could compute the probability associated to one such region,
then we could speak of a statistical confidence region. Again, we may resort
to an approximation considering 0 to be sufficiently near 8%, so that we may
use U. in place of U.: In this case the Taylor expansion of S(8) around 0*
would allow us to write

T A ~

S(6%)-5(6)=(6* —6) U U.(6* - 6)

so that an approximate 100(1 — o) % confidence region would be

R S(e _
obsstfs gz ) o [

Although asymptotically these regions are the same, for finite n there may
be substantial differences: Figure 3.5 shows the confidence regions for the

Exact (solid) and Asymptotic (dashed) confidence regions (P = 0.99, 0.95, 0.90, 0.50)
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Figure 3.5 Confidence regions for the a and V| parameter estimates for subject 4
(Treated).
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estimates of parameters a and V| obtained for subject 4, conditional on the
relative estimated value of b. It can be seen how the exact confidence regions
(for 50%, 90%, 95%, and 99% probability) are distorted with respect to the
corresponding asymptotic regions. The oblique elongation both in the asymp-
totic and in the exact regions depends on the strong correlation between
parameter estimates for a and V.

3.4.1 Nonlinearity at the Optimum

We have seen how different approximate methods for constructing confidence
regions for the parameters can be employed, once we believe that a linear
approximation is warranted. The problem now is that of deciding that this is
indeed the case. To this end, it is useful to study the degree of nonlinearity
of our model in a neighborhood of the forecast. We refer the reader to the
general treatment by Seber and Wild [9], relating essentially the work of Bates
and Watts [5, 10, 11]. Briefly, there exist methods of assessing the maximum
degree of intrinsic nonlinearity that the model exhibits around the optimum
found. If maximum nonlinearity is excessive, for one or more parameters the
confidence regions obtained applying the results of the classic theory are not
to be trusted. In this case, alternative simulation procedures may be employed
to provide empirical confidence regions.

3.5 SENSITIVITY ANALYSIS

Once a model has been fitted to the available data and parameter estimates
have been obtained, two further possible questions that the experimenter may
pose are How important is a single parameter in modifying the prediction of
a model in a certain region of independent variable space, say at a certain
point in time? and, moreover, How important is the numerical value of a
specific observation in determining the estimated value of a particular param-
eter? Although both questions fall within the domain of sensitivity analysis,
in the following we shall address the first. The second question is addressed
in Section 3.6 on optimal design.

The goal here is to determine the (relative) effect of a variation in a given
parameter value on the model prediction. Let y= u(X, 0) + € be the considered
model, with y e V" and 8 € © c V’. We study the sensitivity of the modeling
function u with respect to the parameter @ by means of the (absolute)

sensitivity coefficient, which is the partial derivative M, or by
00
9 Ju(X,0
means of the normalized sensitivity coefficient §(X,9)= . (X, 9)%

The normalization serves to make sensitivities comparable across variables
and parameters. In this context, by sensitivity we would mean the proportion
of model value change due to a given proportion of parameter change. Abso-
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lute and normalized sensitivity coefficients can be computed analytically or
approximated numerically. Figure 3.6a shows the time course of the absolute
sensitivity coefficients of the Gompertz model with respect to the parameters,
which can be computed analytically:

v (1)

ob

ob

_(e

p) a

a—a[eh(i-logvo)ew ]
( ]"’b']=V(I)K%—log%)te-bt_l:l_z(l_e_bt)}
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v, oV,
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Figure 3.6b shows the same sensitivity coefficients expressed as a percentage
of their maximum value. From these graphs it is apparent (without much
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Figure 3.6a Absolute sensitivity coefficients of the Gompertz model. Each curve
portrays the time course of the sensitivity of the model to a specific parameter: a (+),
b (open circles), and Vj, (¥).
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Scaled sensitivities of observations on parameters
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Figure 3.6b Rescaled sensitivity coefficients: a (+), b (open circles), and V, (¥).

surprise, given the model formulation), that at time zero only the V,, parame-
ter influences model output. On the other hand, as time progresses, V; rapidly
loses importance and growth and decay parameters a and b prevail in deter-
mining (much larger) variations in predicted volume, each in the expected
direction (with a increasing and b decreasing expected volume). We note that
model output derivatives with respect to the parameters may well be com-
puted numerically, for example, when no closed form solution of the model
itself is available.

An alternative approach [12, 13] is the following: n values for the parame-
ter 0 are generated randomly, according to some specified distribution over
an acceptable domain ©, giving rise to a parameter value matrix ©,,, with
columns ©; corresponding to the randomly generated values for the parame-
ter component 0;. The model output is computed for some specified X of
interest and for each generated value of 6=(0, )", producing a model value
matrix U,,,,, whose n rows U, are given by (U, )" =u(X,(®,)"). The (Spear-
man nonparametric or Pearson parametric) Monte Carlo correlation coeffi-
cient (MCCC) matrix R,,, is then computed between the generated values
of 0 and the obtained values of u; in other words, R = (r,;)) where ry; is the
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Correlations between observations and parameters
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Figure 3.6¢ Sensitivity analysis: correlations of time points with parameter values.
Each curve refers to one model structural parameter: a (+), b (open circles), and
Vo (%).

correlation coefficient between columns U, and ;. It is intuitive that the
higher the correlation coefficient ry;, the higher the importance of variations
of ; in producing variations of u,. Figure 3.6¢c shows the time course of the
Pearson MCCC between V and the three model parameters for such a Monte
Carlo simulation with n = 10,000, having generated values for the three
parameters out of uniform distributions respectively on the intervals [0.9, 1.1],
[0.165, 0.195], [0.55, 0.65].

We note in passing that there is a different (less expensive) way to generate
simulated parameter values, the latin hypercube sampling scheme, in which
a square grid over parameter space is constructed (from a set of small inter-
vals for each parameter), and the cells of the p-dimensional grid are appro-
priately sampled so as to have exactly one sample in each possible combination
of 1-dimensional parameter intervals. The main advantage of this scheme is
that the required number of samples does not grow as fast as a regular Monte
Carlo sampling from the joint distribution of the parameters as the number
of parameters increases.
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In our case, it is evident that, independently of the absolute values taken,
even qualitatively the shapes of the time courses of the MCCC and of the
classic sensitivity coefficients do not seem to agree.

The influence of parameter a on tumor size, as judged from classic sensitiv-
ity analysis, seems to increase monotonically to a plateau, reaching about 50 %
of its effect no sooner than day 13; conversely, MCCC indicates a fast increase
of effect of parameter a up to a peak at about day 3 or 4, with a subsequent
decrease and attainment of the plateau from above.

From the sensitivity diagrams it would appear that the influence of param-
eter V is small at the beginning, peaks over the range approximately between
8 and 12 days, and slowly fades, being still evident at 20 days; conversely, the
MCCC study would indicate its maximal effect at the very beginning of the
experiment, with a subsequent fast monotonic decrease to essentially zero
within 5 days.

The qualitative differences of the behavior of parameter b under sensitivity
or MCCC analyses are less obvious, even if its (negative) influence on volume
size seems to increase faster according to MCCC.

In the described MC simulation, the action of several simultaneous sources
of variation is considered. The explanation of the different time courses of
parameter influence on volume size between sensitivity and MCCC analyses
lies in the fact that classic sensitivity analysis considers variations in model
output due exclusively to the variation of one parameter component at a time,
all else being equal. In these conditions, the regression coefficient between
model output and parameter component value, in a small interval around the
considered parameter, is approximately equal to the partial derivative of the
model output with respect to the parameter component.

On the other hand, MCCC considers the influence of the variation of one
parameter on model output in the context of simultaneous variations of all
other parameters. In this situation, r; is smaller than 1 in absolute value and
its size depends on the relative importance of the variation of model output
due to the parameter of interest and the variation of model output given by
the sum total of all sources (namely, the variability in all structural parameter
values plus the error variance).

In our example, for very small times the theoretical influence of b (given
by its sensitivity coefficient) grows more slowly than the theoretical influence
of a, while the theoretical influence of V| (initially the only effective one)
increases much more slowly than those of either a or b. Assembling these
separate effects we have a combined situation in which the practical influence
of a (measured by its MCCC) rises quickly while overcoming the influence
of V,, peaks when a is the only effective parameter, then decreases to reach
a steady level as the action of b also asserts itself.

It would therefore seem that whereas standard sensitivity analysis only
gives indications on theoretical single-parameter effects, MCCC would be
able to quantify the effective impact that a parameter variation has in real
life. However, it is crucial to correctly control the different amounts of
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variability (ranges for a uniform distribution, variances for a normal dis-
tribution) that we assign to the several parameters in computing MCCCs.
If the arbitrarily chosen variability for parameter p, is small with respect
to the variability chosen for parameter p,, then the effect of p, will obvi-
ously overshadow the effect of p; in the MCCC computation. This will
actually give rise to a different shape of their relative time courses. Fur-
thermore, in the case of significant population correlation among parame-
ter values, the MC simulation should make use of nonzero covariances in
parameters when generating the parameter sample. Ideally, parameter vari-
abilities should be assigned so as to reflect experimentally observed param-
eter dispersion.

Because this is often difficult, and indeed sometimes the whole point of
the MCCC is to have an idea of what might be observed in hypothetical cir-
cumstances, extreme caution must be exercised in extrapolating the MCCC
results.

These considerations lead us naturally to the question of how to estimate
the population dispersion of the Gompertz parameters out of a given sample
of growing tumors, in particular when data may not be as plentiful as we might
desire.

3.6 OPTIMAL DESIGN

One further question that has a substantial impact on the application of mod-
eling techniques to biomedical problems is the choice of the design. Suppose
that in our Gompertz tumor growth example we wanted to decide, given the
results of some pilot experiments, when it is most useful to observe the tumor
volume. In other words, we wish to choose the time points at which we obtain
tumor volume observations in order to maximize the precision of the resulting
parameter estimates.

These considerations are important when, for example, a repetitive esti-
mation process must be conducted (say, over several different inoculated
tumors), and when each observation has a relevant cost, so that the goal is
that of maximizing the information obtained from a (minimum) number of
observations.

Although several design optimization criteria exist, the obvious approach
is to choose the time points so as to minimize the parameter estimate disper-
sion (variance-covariance) matrix, which in our case, for ordinary least-
squares estimation, is approximated by the inverse of the Fisher information
matrix (FIM) at the optimum. Our criterion therefore becomes to “maxi-
mize” in some sense, the FIM. Depending on the specific objective we pose
for ourselves, we might want to maximize one of the eigenvalues of the FIM,
thus obtaining maximum precision on one parameter; maximize its trace (the
sum of the eigenvalues); or maximize its determinant (the product of the
eigenvalues). This last method, called D-optimal design (D as in determinant)
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is possibly the most widely utilized method of optimal design, and we provide
here an example of its application.

Suppose we want to find optimal sampling times for either a three-sample,
an eight-sample, or a twelve-sample experiment. The key idea is to obtain a
large artificial sample of values of the parameter appropriately distributed
and for each value of the parameter to maximize the determinant of the FIM
with respect to the choice of times. To each such parameter value there will
correspond therefore a choice of 3 (or 8 or 12) sampling times that will maxi-
mize the FIM under the hypothesis that the parameter value is actually equal
to the one considered. We can then build a histogram showing the frequency
with which sampling times have been chosen as optimal and use this empirical
distribution of optimal sampling times to pick the times that we consider most
appropriate for the next experiments.

To apply the above method, we must decide the distribution of parameter
values to explore. One immediate answer would be to impose on the param-
eters an appropriate joint probability distribution, but this would require us
to know it, or at least to have a reasonable idea of what it might be.

A different strategy is the following: Suppose that we have some prelimi-
nary observations. For instance, suppose that only subject 4 has been observed.
Given the observations for subject 4, we obtain an estimate @ of the parame-
ters of the Gompertz model, as well as an estimate s* of the error variance ¢°.
These estimates summarize all the information we can use. Now we can gener-
ate many artificial samples simply by adding to the theoretical predictions,
computed from a Gompertz model with parameter 8, random normal noise
of variance s°. If we then estimate a parameter value 6, from each one of the
r samples, we have an empirical distribution of 0 that is, asymptotically, exactly
the distribution of estimated values of 6 , under the hypothesis that the true
value is the generating value 8" and that the observation error variance is s.

As an example, we have applied the above strategy using the observations
from subject 4 as our pilot sample. Figures 3.7, 3.8, and 3.9 report the obtained
frequency distributions of sampling times for 3, 8, and 12 sampling times, respec-
tively, as well as their cumulative distributions. A choice of optimal sampling
times may be made by splitting into (n + 1) equal parts the cumulative probabil-
ity thus obtained and using the 7 critical time points defining the splits: These
are indicated by the thin vertical lines in the cumulative distribution graphs.

In our case we note that the most important observations for parameter
estimation are the initial one (determining, more than any of the others, the
likely value of the parameter V0) and the last one, which is the most informa-
tive observation on the combination of values of parameters a and b.

3.7 POPULATION MODELING

Suppose we had established that the Gompertz model does reliably describe
the growth of a particular tumor form and that we wish therefore to estimate
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Figure 3.7 Frequency and cumulative frequency distributions of 3D-optimal sam-
pling times for the Gompertz model, given the observations for subject 4. Vertical
lines split the cumulative empirical distribution into equal probability regions.
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the a, b, and V,, parameters in a population of experimentally interesting
tumors. More specifically, we are now interested in evaluating the effect of a
specific drug on tumor growth in a population of rodents.

The standard way to proceed would be to fit the model to the data relative
to each experimental unit, one at a time, thus obtaining a sample of parameter
estimates, one for each experimental tumor observed. The sample mean and
dispersion of these estimates would then constitute our estimate of the popu-
lation mean and dispersion. By the same token, we could find the mean and
dispersion in the “Control” and “Treated” subsamples.

There are two problems with the above procedure, however. The first is
that it is not efficient, because the intersubject parameter variance it computes
is actually the variance of the parameters between subjects plus the variance
of the estimate of a single-subject parameter. The second drawback is that
often, in real-life applications, a complete data set, with sufficiently many
points to reliably estimate all model parameters, is not available for each
experimental subject. A frequent situation is that observations are available
in a haphazard, scattered fashion, are often expensive to gather, and for a
number of reasons (availability of manpower, cost, environmental constraints,
etc.) are usually much fewer than we would like.

It should be kept in mind that it would be a severe mistake to simply fit
the model by least squares (ordinary or weighted) on the aggregated observa-
tions obtained from different experimental units. A simple linear regression
example may explain why: Suppose that,in a hypothetical experiment designed
to evaluate the correlation between a variable x and a variable y, the six
experimental units depicted in Figure 3.10 all have a negative correlation
between x and y, in other words, that y = mx + g, with m negative. Suppose
further that the different experimental units all have high average y for high
average x. If we were to fit all points from this experiment together we would
estimate a very significantly positive linear coefficient m in our y versus x
model, instead of the common negative m that all experimental units share.

What we need instead is a “population” method whereby we can estimate
simultaneously, on the aggregated data, the model structural parameters,
their population dispersion matrix, and the error variance. This method will
then be able to incorporate information even from subjects for whom only
relatively meager data sets are available. After the pioneering applications of
a specific nonlinear mixed effects model (NONMEM) in pharmacokinetics
by Sheiner et al. in the early 1980s [14], a well-developed literature on general
nonlinear mixed effects (NLME) algorithms is now available [2, 15, 17]. We
will now consider the following algorithm published by Lindstrom and Bates
in 1990 (L&B90, reference 18).

Let y; denote the jthresponse,j=1,. .. ,n;, for the ithindividual,i=1, ... ,m
taken at a set of conditions x; that in this case correspond to the set of tem-
poral time. The function f(B, x) represents the model relationship between y
and x, where J is the vector of parameters of dimension p x 1. Although the
functional form f of the model is common to all individuals, the parameter 3
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Figure 3.10 Illustrative example of linear regression between two artificial variables
for six experimental units. For each unit, denoted by a different graphical symbol, a
closely packed set of five observations with negative slope is measured. The whole
data set, if fitted naively, would show a very significant positive slope.

may vary across the individuals. A vector p x 1 of parameters f; is therefore
specified for each subject. The mean response for individual i depends on its
regression parameters f; so that E(y,|B)= f(x;.B;).

Let us define the following two-stage model:

Stage 1 (intraindividual variation)
In the first stage let the jth observation on the ith individual be modeled as
follows:

y,«jZﬁ(B,«,x,«j)+e,»,~,i=1,...,m,j=1,...,n,«

where the function fis a nonlinear function of the subject-specific parameter
vector f3;, x; is the observed variable, e, is the normally distributed noise term,
m is the total number of subjects and #; is the number of observations for the
ith subject.

Stage 2 (interindividual variation)
In the second stage the subject-specific parameter vector is modeled as:

B;=gB,b;)=B+b;, b~ N(0,D)

where P is a p-dimensional vector of fixed population parameter, b; is a k-
dimensional random effect vector associated with the ith subject (not varying
with j), and D is its general variance-covariance matrix.

Let us suppose that the error vector is distributed as
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€; |bi ~ N(O,R,—(E,Bi ))

where the variance-covariance matrix may well depend on the specific indi-
vidual parameters. This can be written as

= Rzl/z (&Bi)ei ’

where g has mean zero, covariance matrix I,;, and is independent of b;, and
RI*(€, B;) is the Cholesky decomposition of R;(E, B;). The first stage of the
model can be therefore written as:

=f(B,x,)+RZ(B,E)e, i=1,...,m. (3.4)

Lindstrom and Bates argue that a Taylor series expansion of (Eq. 3.4) around
the expectation of the random effects b, = 0 may be poor. Instead, they con-
sider linearizing (Eq. 3.4) in the random effects about some value b closer
to b; than its expectation 0.

In particular, retaining the first two terms of the Taylor series expansion
about b; = b} of f;(B;, x;) and the leading term of R}*(B;, §)s;, it follows that

= fi{g (B.bY). x. }+ F (B.b})A, (B.5}) (b, — 57) + (3.5)
R (B,b%.8)e,i=1,...,m

where F;(b, b¥) is the (n; X p) matrix of derivatives of f;(j3;) with respect to B
evaluated in B; = g(B, b¥), and A, (B, b¥) is the (p x k) matrix of derivatives of
g(B, b;)with respect to b; evaluated in b; = b;. Defining the (n; X k) matrix Z(p,
b)) = F; (B, b)A,, (B, b)) and ef = Ri”(g(B, b¥),€) &, i=1,...,m (Eq.3.5) can
be written as

= f{g(B.b¥).x;} - Z (B, b¥) b+ Z,(B, e)b,+b¥, i=1,....m

It follows that for b, close to bF the approximate marginal mean and covari-
ance of y; is:

E(y)=f{e(B.b)x}-Z(B.b)bE, i=1,...,m
Cov(y,)=Z,(B.b¥) DZI(B.b¢)+ R ( B,b§) = Vi (B.bjo),i=1,....m

where o is the vector of parameters consisting of the intraindividual covari-
ance parameter & and the distinct elements of D.

The following exposition of the L&B90 algorithm differs from the original
in order to allow greater generality. In particular, Lindstrom and Bates
describe their iterative algorithm under the following restrictive conditions:
(i) that the interindividual regression function g(B, b;) is linear in B and in b;
and (ii) that the intraindividual covariance matrix R,;(B;, §) does not depend
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on f3; (and hence on b;), but rather depends on the subject i only as far as its
dimension. Our exposition offers a more general formalization of the problem,
letting the functional form linking the fixed effects and the random effects
be arbitrary and allowing a more general structure for the variance-
covariance matrix of the error vector.

The L&B90 algorithm proceeds in two alternating steps, a penalized non-
linear least-squares (PNLS) step and a linear mixed effects (LME) step.

In the PNLS step the current estimates of D and & are fixed and the con-
ditional modes of the random effects b and the conditional estimates of the
fixed effects § are obtained minimizing the following objective function:

m | log |f)| + biTﬁ’lbi + log‘Ri ([30 J;i,o,é)‘ +[yi—f; {g (B.b, )}]T
=1 Ri_1 (ﬁo ’Bi,o 9%)[)}1 - f; {g(ﬁ’bl)}]

where Bq and b, o are some previous estimates of B and b;.
Let fand b; denote the resulting estimates.
The LME step updates the estimates of D, § and & minimizing:

é(log“/i(ﬁ,gi’(l))‘ + r?‘T(B,l;l.,ﬁ)Kfl (ﬁ,l;l.,o)) r¥ ([3,13,.,[%))
where
rt(B.bB) =y~ £ {g(B5)} ]+ Z (5.5

The process must be iterated until convergence and the final estimates are
denoted with BLB, i1, and oy 5. The individual regression parameter can be
therefore estimated by replacing the final fixed effects and random effects
estimates in the function g so that:

~

BLLB = g(ﬁLB’Bi,LB) = [gLB + l;i,LB

Confidence intervals

If the approximation (Eq. 3.5) is assumed to hold exactly we can derive the
usual asymptotic results. The Pz estimator is asymptotically normal with
mean B and covariance matrix

pI (ZXT(Bb,LB) ' (Bb;15.00) "(B’B’*LBU] (3.6)

and an estimate 3,5 may be obtained by evaluation of (Eq. 3.6) at the final
estimates of B and ® with estimated standard errors calculated as the square
roots of the diagonal elements.

We applied the algorithm to our sample of five Control and four Treated
subjects, parameterizing the model so as to have general coefficients a, b, and
Vi (applicable to all subjects, whether treated or control), plus differential
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TABLE 3.3 Population Parameter Estimates

67 =23214.1985.
Fixed Effects

a b Vs Delta_a Delta_b
0.40517 0.042632 0.3055 -0.17573 -0.00576
Random Effects
Subject Treatment bi_a bi_b bi_V,
1 1 0.00636 -0.01122 0.01222
2 1 0.01028 -0.01046 0.01484
3 1 0.00096 -0.01161 -0.01639
4 1 0.02586 —-0.01083 0.00686
5 0 -0.03957 0.00005 -0.01211
6 0 -0.00421 -0.00311 0.00668
7 0 -0.02901 0.00532 -0.00047
8 0 0.00746 0.00344 0.00633
9 0 -0.01757 0.00440 -0.00999
Fixed Effect Covariance Matrix

a b Vo diff_a diff_b
a 0.000974 0.000108 —-0.00855 -0.00032 -1.69E-05
b 0.000108 2.87E-05 -0.00109 -2.42E-05 -1.71E-05
Vo —-0.00855 -0.00109 0.092512 0.001494 0.000113
diff_a -0.00032 -2.42E-05 0.001494 0.000442 1.76E-05
diff_b -1.69E-05 -1.71E-05 0.000113 1.76E-05 3.60E-05
Random Effect Variance-Covariance Matrix

bi_a bi_b bi_V,

bi_a 0.00079 -0.00001 —-0.00043
bi_b -0.00001 0.00007 0.00013
bi_V, -0.00043 0.00013 0.00023

effects Delta_a and Delta_b, applicable to the Treated subjects only. The
parameter estimates are reported in Table 3.3. We note that treatment pro-
duces a large difference (-0.17 over 0.40, i.e., about minus 42%) in the coef-
ficient a, describing the initial growth rate of the tumor, and a small difference
(-=0.006 over 0.043, i.e., about minus 14%) in the coefficient b, which is respon-
sible for the saturation of tumor growth. The significance of these differences
may be assessed by using the estimated standard errors for the difference
parameters (0.021 and 0.006, respectively). Whereas the coefficient a is highly
significantly different from zero (using either the z-distribution or the normal
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approximation to the appropriate f-test, given the large number of degrees of
freedom), the coefficient b is not significantly different from zero. The conclu-
sion is that, in our series, treatment appears to highly significantly affect
growth rate of the tumor, slowing it down, whereas it does not appear to influ-
ence the saturation of growth as time progresses.

Sample graphs are reported in Figure 3.4, a—d, where some of the studied
subject’s observed volumes are reported together with single-subject OLS-
predicted time courses (solid lines) and population-estimated time courses
(using the subject’s conditional modes). It can be seen how in some subjects
(see for instance Fig.3.4, a and ¢) OLS would predict a faster-saturating time
course than L&B, because the single-subject estimate is “stabilized,” in the
population approach, by the combined effect of all remaining subjects.
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4.1 INTRODUCTION

The ultimate goal of drug discovery is to identify novel compounds that have
the potential to elicit biological effects. High-throughput screening allows an
amazingly quick and relatively economic method to accomplish this goal [1].
The rate at which high-throughput systems are improving is remarkable, and
it is likely that in the future the rate of these improvements will be even
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greater [2]. Many of the chapters in this text describe clever ways to improve
and develop compounds to examine in high-throughput screens.

Yet these high-throughput systems do lack certain abilities [3]. Fortu-
nately, there are techniques to address these deficiencies. One of the most
appealing approaches to managing the challenges of high-throughput screen-
ing is ethnobotany—the study of how people use plants [4]. However, ethno-
botany is labor intense, and much of the knowledge regarding plant use is lost
to modern-day healers [5]. Luckily, for thousands of years explorers and
expatriates have documented the use of plants as medicines. Thus much of
this lost knowledge remains in historic herbal texts [6]. Recent advancements
in bioinformatics have made it possible to examine these texts in a high-
throughput fashion, identifying plants, for a specific illness, that have yet to
be examined in the current literature [7, 8]. Using this technique to augment
classic high-throughput screening ultimately can result in a highly efficient
drug discovery system in which plants to be screened are selected based on
purported medicinal properties rather than random testing.

This chapter begins with a survey of the challenges of high-throughput
screening, followed by a background in medicinal ethnobotany. The applica-
tion of historic herbal texts as a resource is then addressed, and an outline of
a bioinformatics system developed to facilitate high-throughput analysis of
the historic texts is discussed. Finally, this chapter posits the future of mining
historic herbal texts for novel drugs.

4.2 CHALLENGES OF HIGH-THROUGHPUT SCREENING

There are two principal challenges inherent to high-throughput screening.
Although these two deficiencies are not fatal to high-throughput screens,
mitigating these challenges results in a more efficient screening process.
Hits identified in high-throughput screening are not always effective in vivo.
Many high-throughput screening approaches use cell-free systems. There are
advantages to this simplified technique for drug discovery. For example, bio-
logical systems have compensatory mechanisms that can obscure readouts.
Creating a specific biochemical pathway ex vivo to analyze in a high-throughput
fashion allows for the examination of that pathway in isolation. However,
directly relating identified drug leads in these artificial systems to a cell-based
system is sometimes not possible. For example, using a nominal system to
screen for novel HIV therapeutics has resulted in a number of identified hits of
target compounds. However, when these target compounds were tested in a
cell-based system they did not perform as in the cell-free system [9].
Selection of the compounds examined in high-throughput screening is not
targeted. High-throughput screening excels at examining the efficacy of com-
binatorial derivatives. Yet, before the combinatorial derivatives are exam-
ined, lead compounds must be identified [10]. Although broad-based screens
of natural products have resulted in successful chemotherapeutics such as
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taxol [11], these approaches are not targeted with previous knowledge. Apply-
ing known information regarding the use of a plant as medicine allows a more
elegant and pointed approach.

4.3 MEDICINAL ETHNOBOTANY

Plants, as well as other organisms, have been developing defense mechanisms
since the beginning of time [12]. These defense mechanisms are important
for the existence of many organisms, yet these mechanisms are critical for
plants because plants generally are not mobile, although the creatures dining
on them are. Thus plants have developed secondary metabolites, agents that
confer a selective advantage but are not essential for life processes. These
secondary metabolites deter organisms from eating the plants, resulting in a
selective advantage for the plant [13].

For thousands of years adept humans have been using these secondary
metabolites as medicines [14]. Thus, although a plant may contain a com-
pound that deters an animal from eating the plant, that same compound may
selectively induce cell death in tumor cells at a lower dose. This situation is
apparently the case with the chemotherapeutic taxol [11]. Through a pre-
sumed system of trial-and-error experimentation, knowledge regarding the
medicinal uses of plants has been accumulated by several past populations
[15]. This accumulated knowledge is traditional medicine knowledge, and
medicinal ethnobotany is the study of how people, employing years of trial-
and-error knowledge, use the plants as medicines.

The best example of using this knowledge in drug discovery is the identi-
fication of Prostratin. While working in Samoa to identify plants with poten-
tial chemotherapeutic properties, Dr. Paul Cox documented the use of
Homalanthus nutans for the treatment of hepatitis [16]. Surprisingly, when
extracts of this plant were incidentally examined for anti-HIV properties, the
extract appeared effective for treatment of HIV [17]. Eventually, this com-
pound was shown to be effective at activating the latently infected T-cell
pool [18]. Importantly, this population of cells is a principal reason for HIV
persistence [19].

Working with traditional healers is a thrilling experience. These individu-
als are frequently excited that someone is interested in their knowledge.
Figure 4.1 shows the author working with a traditional healer in Samoa col-
lecting the medicinal plant Atuna racemosa. This healer’s excitement that
someone was interested in her knowledge was so great that she was first in
line to package samples for analysis.

Yet the reasons behind this healer’s excitement are lamentable. There is a
lack of interest in traditional medicine from the younger generation, and as
a result there is a generational loss of traditional medicine knowledge [20].
For example, the two individuals that identified Prostratin as an antiviral
have since passed away, and it is likely that an individual performing the
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Figure 4.1 Collecting a medicine plant in Samoa. Ethnobotanical work involves
working with healers to identify the medicinal uses of plants. Although this work
is laborious, traditional medicine healers are frequently excited to share their
knowledge.

same study today would not identify H. nutans as an antiviral candidate
specimen.

Fortunately, for many years, expatriates, explorers, and missionaries have
recorded this lost information in herbal texts [7]. Because of these individuals’
diligence in recording the uses of certain plants, it is possible to identify novel
agents by mining historic herbal texts. However, manual extraction of infor-
mation from these texts can be laborious. Using a bioinformatics-based
approach to mine these historic texts allows for a high-throughput system to
identify new leads and resurrect lost traditional medicine knowledge [8].

4.4 HERBAL TEXTS

Historic herbal texts can be considered both works of art and troves of infor-
mation. Many of the original copies of the texts still available were hand
copied and corrected as deemed necessary by the transcriptionist [21]. Fre-
quently, the images accompanying the text descriptions were ornately hand
painted. Often, these images contain such intricate detail that it is possible to
accurately identify the genus and species of the plant described. For example,
Figure 4.2 shows the illustration of the common pineapple from the 400-year-
old Ambonese Herbal.
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Figure 4.2 Nearly 400 years ago G. E. Rumphius was stationed on the island of
Ambon in Indonesia. This figure shows his rendition of the common pineapple in the
Ambonese Herbal. Frequently, the illustrations in historic herbal texts are detailed
enough to accurately identify the plant described in the text.

There are many historic herbal texts throughout the world, some dating
back as far as 3000 B.c. However, the ancient Greeks were the first to create
herbal texts with enough detail to accurately identify the plant and ailment
treated. Thus texts from around 500 B.c. and later are the only texts able to



110 DRUG DISCOVERY FROM HISTORIC HERBAL TEXTS

be examined for new drug leads [22]. The advent of mass printing systems
(ca. 1500 A.p.) resulted in increased popularity and diversity of historic
herbal texts [23]. The uniformity of the script in these works makes them
particularly well suited for scanning into an electronic format. Many of these
texts are held in national repositories in places ranging from the National
Library of Medicine (Bethesda, MD, USA) to the Vatican Biblioteca (Rome,
Italy).

Unfortunately, there is little doubt that some of the plants identified in
these texts are extinct. The story of the silphium plant illustrates this loss of
plant material (Appendix). Although the events driving the loss of plant
resources are not exactly known, this loss is a concern for drug discovery [24].
Certain drugs, such as the phorbol ester Prostratin, would likely never have
been included in a high-throughput screening assay today—generally phorbol
esters are believed to be tumorigenic, yet interestingly, Prostratin is not
[17].

4.5 HIGH THROUGHPUT WITH COMPUTER ASSISTANCE

Although manual extraction of information from herbal texts is straightfor-
ward (Fig. 4.3A), the work is labor intense and requires many areas of exper-
tise (Fig. 4.3B). Historians must provide context for the language. Botanists
are necessary to update the names and correctly identify the plants discussed.
Physicians and biomedical scientists are required to extrapolate the potential
pharmacological function of the plant compounds used to treat a certain dis-
order in the text. Luckily, the use of bioinformatics to extract this information
can be more efficient than manual extraction [7].

Our group has worked to fashion a high-throughput system allowing for
the rapid extraction of information from historic herbal texts. This system
has only recently been made possible with the latest advancements in bio-
informatics and technology [25]. Figure 4.3C outlines the application of
these recent advancements and the role they play in extracting information
from historic texts. Currently, it is not possible to streamline these func-
tions seamlessly. Rather, data from each entity are collected, and then
the next step in the sequence is initiated. Thus data collected from the
SNOW-MED [26] analysis of the historic herbal must be queried in the
NAPRALERT™ database [27]. Clearly, these resources are not the only
available options. For example, W3 Tropicos (http://mobot.mobot.org/
W3T/Search/vast.html) would likely assist in validating plant names, just
as the International Plant Names Index (http://www.ipni.org/index.html)
does for our system.

Developing a fully automated script will only be possible once all links of
the process are available in the proper formats to receive these queries. The
system we have developed is presented in Figure 4.4. Details of each compo-
nent of the highlighted system are described below.
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A. Flow and analysis of information B. Expertise required C. High-throughput system
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and uses
Pharmacologic function Natural Products NAPRALERT
in current literature Chemist

|

Table of plants not described
in current literature

Figure 4.3 (A) The methods for choosing plants to examine from historic herbal
texts are straightforward. (B) Yet a range of expertise is necessary to accurately
identify plants and their purported uses. (C) A number of recent advancements in
technology have allowed high-throughput examination of historic herbal texts.

4.5.1 Kirtas System

Foremost it is critical to move the historic herbal text into an electronic
format. This process can be very time consuming [28]; however, it is essential
for two reasons. First, these historic texts are rare and having them in an
electronic format facilitates increased access for the collaborating groups.
Second, the volume of information is difficult to handle when the data are
not in an electronic format. We have recently employed the Kirtas system
(Fig. 4.5) to move a number of texts into electronic format. We have yet
to formally address the precision of the scanned-in documents; however,
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*...saw the sap used against JifiSH and infected mouth, and roasted fruit against dysentery and Eholsra ™
J
B. Extract Plant Plant part Symptom Diﬁ(_)lﬂﬂl
Semecarpus Sap Shingles Indiéan Curap
Manual read CASSUVILITY
or e
4l A Asgle marmelos Sap mad Thrush
I Fruit Dyseniery Cholesa
T Extrapolated
|C. Update pharmacalogic
1. Plant name 4. Plant IPNI name 2 function
confirmation (IPNI) Shingles Indian Curap Antiviral
CASSUVILT cassuvium Robx
2. Pharmacologic
extrapolation from Aegle Aegle marmelos Infected Thrush Antifungal
{L.) Correa maouih
Dysentery Chelera Antibiotic
v Antidiarrheal
i ™
D. Compare From herbal NAPRALERT™ report
| Pharmacologic Pharmacologic
-Cumpam‘mw IPNI name function IPNI name function
|reported function
Semecarpus Anthiral Semecarpus None reported
(NAPRALERT™) cassuvitrn Roxb. cassuvium Roxb.
e Me!rmms Antifungal Asgle marmelos Antidiarrheal
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Figure 4.4 The general protocol for information extraction from an herbal text
(A-E) is paired with case examples from our work with the Ambonese Herbal by
Rumphius. (A) Text is digitized. (B) Through either manual reading or automated
extraction the plant name(s), plant part(s), and symptoms or disorders are identified.
(C) These extracted data are then updated (as necessary) to reflect current names of
the plants, using the International Plant Names Index (IPNT), and the pharmacologi-
cal function(s) of the described medicinal plants are extrapolated from the mentioned
symptoms and disorders. (D) The current botanical names are queried against a
natural products database such as the NAPRALERT™ database to determine
whether the plant has been previously examined. (E) Differential tables are generated
that separate the plants examined in the literature from plants that may warrant
further examination for bioactivity. (Adapted from Trends in Pharmacological Sci-
ences, with permission.) See color plate.

preliminary analysis suggests that this approach will provide a high-through-
put system to move these texts into electronic format.

4.5.2 International Plant Names Index

As more is known regarding plant taxonomy, plant names change. Because
the rules used to define how plants are named imply certain relationships [29]
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Figure 4.5 The Kirtas APT BookScan 1200 allows for the automated scanning of
historic herbal texts into electronic format. (Image supplied by Lisa Stasevich, Kirtas
Technologies.)

and allow interrelationships between different species to be determined [30],
updating the plant names used in the analysis of herbal texts is important. As
a result of this importance, the methods used to assign plant names are well
defined [31] and there is an established protocol to change a plant name
[32].

Nonetheless, these changes in plant names can be difficult to manage.
Fortunately, there are a number of databases that provide correlations
between historic names and the current names of these plants. We have
chosen to use the International Plant Names Index for our analysis [33]. By
querying this database we are able to either validate the name of the plant
in the historic text or, more frequently, to update the plant name to the
current name.
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4.5.3 SNOW-MED

We have developed a system based on SNOW-MED to extract medical infor-
mation from herbal texts. SNOW-MED is a semantic index that recognizes
relationships between groups of words [26]. For example, the semantic map
for thrush is related to yeast, infection, and microbe. Although this system
may eventually allow a potential pharmacological function to be extrapolated,
we are currently using the system to simply extract disorders from the text.
We have used the Mayo Vocabulary Server to perform this data mining
[34, 35].

4.5.4 NAPRALERT™

Incorporating the Kirtas system with the International Plant Names Index
and SNOW-MED allows movement of the historic text into an electronic
format, identification of current plant names, and identification of the symp-
toms treated with the plants. To complete the mining of historic herbal texts
for novel drug leads we use the Natural Products Alert (NAPRALERT™)
database to compare the information extracted from the historic herbal text
to the reports of plant use in the current literature. The NAPRALERT™
database provides a summary of plants’ ethnopharmacological use, biochemi-
cal activities, and isolated compounds [27]. By querying each plant (with the
current plant name) it is possible to identify any reports in the current litera-
ture regarding the plant. As an example, Table 4.1 shows the NAPRALERT™
output for Cycas rumphii.

4.6 CURRENT CHALLENGES AND FUTURE DIRECTIONS

It is possible to extract novel drug leads from historic herbal texts. However,
manual extraction techniques are laborious. The automated extraction system
we have developed makes it possible to identify potential novel drug leads in
a high-throughput fashion.

The prospect of using historic herbal texts as a tool to resurrect lost tradi-
tional medicine knowledge and to identify new drugs is exciting. However,
there are six significant challenges that need to be addressed to increase the
efficiency of this system:

1. Identification of historic herbal texts. There are thousands of herbal
texts in the world. Many of them are rare and unknown to our modern reposi-
tories. Identifying the location of these texts and the language in which the
texts are written would allow a clearer outlook for the future of this field.

2. Quantified evaluation of drugs that could have been identified in herbal
texts. It would be a valuable assessment to quantify the number of pharma-
ceuticals that have been described with the correct purported uses in an
herbal text. A project of this nature would incorporate selecting a historic
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herbal text, or a group of texts, and identifying plants described in the texts
that have ultimately resulted in a pharmaceutical.

3. Effective movement of herbal texts into electronic format. We have
used a single system to move herbal texts into an electronic format. This
system has worked well for texts printed after the era of mass printing.
However, there are many texts that were written before 1600 A.p. It is likely
that there are other mechanisms to complete the task of moving historic
herbal texts into an electronic format. For example, the Missouri Botanical
Gardens has manually scanned a number of historic herbal texts into elec-
tronic format [28].

4. Proof-of-concept through new pharmaceuticals. We have generated
preliminary data suggesting that one of Rumphius’s purported pharmaceuti-
cals does have the medicinal properties described. However, it has not been
shown that the active compound is novel. Examining other plants identified
in historic herbal texts for their purported medicinal properties may ulti-
mately show that novel pharmaceuticals can be developed by mining historic
herbal texts.

5. Translation into English. Many of these herbal texts are in languages
other than English. Regrettably, the semantic mapping systems are only
appropriate for English texts. Certainly, as electronic translation programs
improve, it will become possible to mine texts written in other languages.

6. The loss of plants described in texts. There is a loss of both traditional
medicine knowledge and plant resources for traditional medicine use [24].
The loss of traditional medicine knowledge is regrettable; however, mining
historic herbal texts provides a way to resurrect that information. In
contrast to the loss of traditional medicine knowledge, the loss of biodiver-
sity is permanent. For example, The Living Planet Index suggests a 37%
loss of biodiversity between 1970 and 2000 [36], and pictures of ecological
devastation are all too common (Fig. 4.6). It is usually assumed that this
loss of biodiversity is inextricably tied to development; however, recent
work has suggested this assumption to be false [24]. Thus, to prevent the
loss of other species like silphium, ecologically sustainable development is
critical.

4.7 CONCLUSION

The techniques for drug discovery are developing at an astonishing rate.
However, there are certain challenges facing the current systems of drug
development. The use of ethnobotanical information provides additional
information regarding the potential pharmacological functions of plants. Yet
there is a generational loss of traditional medicine knowledge, and ethnobo-
tanical investigation is labor intensive. The use of bioinformatics to extract
information from historic herbal texts provides an efficient method of identi-
fying potential novel plant-based lead compounds.
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Figure 4.6 Nonsustainable logging in Laos is an example of the current loss of
biodiversity.

Employing herbal texts as a resource for drug discovery holds significant
promise. Yet this technology is in its infancy, and there are a number of chal-
lenges to overcome. Fortunately, many of these challenges are being addressed
in different disciplines. In the future, incorporation of these multidisciplinary
advancements will allow high-throughput mining of historic herbal texts to
supplement high-throughput screening as a method for drug discovery.

4.8 APPENDIX. THE EXTINCTION OF SILPHIUM

Because not all of the species in the world are known, it is difficult to deter-
mine the exact rate of species extinction. Unfortunately, there are plants with
medicinal properties that have gone extinct. The first case of a medicinal plant
extinction documented in an herbal text is silphium [37].

Silphium was originally discovered in what is now Libya after a mysterious
black rain fell around 600 B.c. This plant subsequently spread throughout the
region [38] and became valuable because of the particular taste of meat from
animals that fed on it. Silphium was also a highly effective medicine. The
dried sap of the plant could be used on a variety of disorders from fevers and
warts to hair loss. Because of the broad uses of the plant, and a reported
inability to cultivate it [38], silphium became highly prized. Because the plant
was difficult to find naturally, Julius Caesar held on to nearly a ton of the
dried resin in the Roman treasury [39]. Eventually, the lack of supply drove
the value of the plant resin so high that the Roman Empire declared a
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monopoly on silphium. Soon after, because of the scarcity of the plant
and the Roman decree, silphium literally became worth its weight in gold.
Ultimately, the combination of scarcity and high price led to the extinction
of silphium.
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5.1 INTRODUCTION

One should not lightly dismiss the importance of serendipity in the history of
drug discovery. In this context, the tale of the antiallergy drug Intal is par-
ticularly interesting [1]. The toothpick plant (Ammi visnaga) originates in the
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eastern Mediterranean and has, since antiquity, been used as a folk treatment
for renal colic. First isolated from the fruit of the Ammi visnaga in 1879,
khellin, which is still in use as a treatment for angina, was found to induce
smooth muscle relaxation and have interesting bronchodilatory effects in
asthma. In 1955, chemists at Benger Laboratories began studying khellin
analogs as potential treatments for asthma, screening compounds against a
guinea pig asthma model. At this point, asthmatic physician Roger Altounyan
joined the research team. Altounyan (1922-1987) was born in Syria and sub-
sequently received medical training in the UK. As children, he and his sib-
lings acted as the inspiration for the Walker family, characters in Arthur
Ransome’s “Swallows and Amazon” novels. Working at Benger Laboratories,
Altounyan tested hundreds of khellin analogs on himself, investigating their
relative prevention of his allergic reaction to inhaled guinea pig dander. One
analog, K84, significantly reduced his symptoms. In 1963, a contaminant—
later identified as sodium cromoglycate—proved highly active. Early in 1965,
Altounyan identified a compound—the 670th compound made over nine
years—which worked for several hours; clinical trials began in 1967. The
compound functions through mast cell stabilization, preventing the release
of inflammatory mediators. Marketed as Intal, the drug, which has strong
prophylactic properties, is used in numerous forms to treat asthma, rhinitis,
eczema, and food allergy.

Charming, and, indeed, alarming, though this story seems, it happily
undermines current notions of “proper” drug discovery. It gainsays the use
of animal models, emphasizing, much to the delight of antivivisectionists, the
necessity of direct human testing, and, as we began by saying, it highlights
the importance of good fortune and serendipity in the process of discovering
new medicines; as an old adage has it: An ounce of luck is worth a pound of
cleverness. Today, of course, such practices are deemed utterly inconsciona-
ble: The modern pharmaceutical industry spends millions of person-hours
and billions of dollars increasingly to systematize drug discovery. For example,
the top 10 pharmaceutical companies spent nearly $36 billion on research and
development (R&D) in 2003, though possibly rather more on the “D” than
on the “R.” This is all with the intention of finally eliminating the requirement
for luck. Receptor-orientated, mechanism-driven research has replaced tar-
getless pathologies as the primary focus of the discovery process. Sophisti-
cated medium- and high-throughput synthesis and in vitro screening
technologies have largely displaced individual “hand-crafted” assays. Increas-
ingly also, sophisticated techniques of data management and prediction have
begun to play their part. Of these, arguably, bioinformatics has been the most
visibly successful. The discovery of marketable novel chemical entities
(NCEs)—that is, new patentable drugs and medicines—is, for the pharma-
ceutical industry, the principal fountainhead of sustained and sustainable
prosperity. Preclinical drug discovery typically starts by identifying initial
lead compounds, which are then optimized into candidate drugs that then
enter clinical trials. But before a new drug can be developed, one needs to
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find the targets of drug action, be that a cell surface receptor, enzyme, binding
protein, or other kind of protein or nucleic acid. This is the domain of
bioinformatics.

5.2 SO WHAT EXACTLY IS BIOINFORMATICS?

The word “bioinformatics” has been in common usage since the early 1990s,
and it means, as words sometimes do, different things to different people. A
simple, straightforward, yet comprehensive definition is not readily forthcom-
ing. One of the better attempts summarizes the discipline as “the application
of informatics methods to biological macromolecules.” Forming a more inclu-
sive description remains challenging. Why should this be? It is partly because
the nature of bioinformatics is constantly changing or, at least, constantly
growing: You cannot easily put a name to it because you cannot pin it down
long enough. The scope and focus of bioinformatics is constantly developing
and expanding to encompass more and more new areas of application.
However, it is clear that bioinformatics concerns itself with medical, genomic,
and biological information and supports both basic and clinical research.
Bioinformatics develops computer databases and algorithms for accelerating,
simplifying, and thus enhancing, research in bioscience. Within this, however,
the nature and variety of different bioinformatics activities are hard to quan-
tify. Bioinformatics is as much a melting pot of interdisciplinary techniques
as it is a branch of information science: It operates at the level of protein and
nucleic acid sequences, their structures, and their functions, using data from
microarray experiments, traditional biochemistry, as well as theoretical
biophysics.

The growth of bioinformatics is a clear success story of the incipient infor-
matics revolution sweeping through bioscience. Although bioinformaticians
may not find themselves quite as employable as they did five years ago, none-
theless computational biologists at all levels have reimagined themselves
under this compelling brand; many computational biologists desire to shelter
under the bioinformatics umbrella and thus access enhanced funding. The
services of bioinformaticians are in demand by canny biologists of many
flavors. As new genomes are sequenced we wish to know all manner of things:
where sites of posttranslational modification are, the subcellular location of
protein, whether a protein will be a substrate for certain enzymes, or what a
particular pK, is for an enzyme active site residue. The list is endless. Address-
ing all of this experimentally would be prohibitive in terms of time, labor, and
resources. The only answer is recourse to a bioinformatics solution.

Bioinformatics focuses on analyzing molecular sequence and structure
data, molecular phylogenies, and the analysis of postgenomic data, such as
generated by genomics, transcriptomics, and proteomics. Bioinformatics
seeks to solve two main challenges. First, the prediction of function from
sequence, which can be performed with global homology searches, motif
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database searches, and the formation of multiple sequence alignments.
Second, the prediction of structure from sequence, which may be attempted
with secondary structure prediction, threading, and comparative, or so-called
homology, modeling. It is also an implicit assumption that knowledge of a
structure facilitates prediction of function. In reality, all predictions of func-
tion rely on identifying similarity between sequences or between structures.
When this similarity is very high, and thus is intrinsically reliable, then useful
inferences may be drawn, but as similarity falls away any conclusions that are
inferred become increasingly uncertain and potentially misleading.

Within pharmaceutical research, bioinformatics typically equates to the
discovery of novel drug targets from genomic and proteomic information.
Bioinformatics can be subdivided into several complementary areas: gene
informatics, protein informatics, and system informatics. Gene informatics,
with links to genomics and microarray analysis, is concerned, inter alia, with
managing information on genes and genomes and the in silico prediction of
gene structure. A key component of gene informatics is gene finding: the rela-
tively straightforward searching, at least conceptually if not always practically,
of sequence databases for homologous sequences with, hopefully, similar
functions and analogous roles in disease states. Protein informatics concerns
itself with managing information on protein sequences and has obvious links
with proteomics and structure-function relationships. Part of its remit includes
the modeling of three-dimensional structure and the construction of multiple
alignments. The third component concerns itself with the higher-order inter-
actions rather than simple sequences and includes the elaboration of func-
tional protein-protein interactions, metabolic pathways, and control theory.
Thus another, and increasingly important, role of bioinformatics is managing
the information generated by microarray experiments and proteomics and
drawing from it data on the gene products implicated in disease states. The
key role of bioinformatics is, then, to transform large, if not vast, reservoirs
of information into useful, and useable, information.

Bioinformatics relies on many other disciplines, both as a source of data
and as a source of novel techniques of proven provenance. It forms synergistic
links with other parts of bioscience, such as genomics, as both consumer and
vendor. In the era of high-throughput technologies, bioinformatics feeds upon
many data-rich disciplines. Yet it also provides vital data interpretation and
data management services, allowing biologists to come to terms with the
postgenomic data deluge rather than being swept away by it. Bioinformatics
is still largely concerned with data handling and analysis, be that through the
annotation of macromolecular sequence and structure databases or through
the classification of sequences or structures into coherent groups.

Prediction, as well as analysis, is also important. Conceptually, the differ-
ence is clear, but it is seldom properly appreciated. Risk is associated with
predictions, but there should not be any significant risk associated with an
analysis. To put it rather simply: Prediction is about making informed, edu-
cated guesses about uncertain, untested events, whereas analysis is about
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identifying relationships among known, certain data. However, despite the
steady increase in studies reporting the real-world use of prediction algo-
rithms, there is still an ongoing need for truly convincing validations of the
underlying approach. Why should this be? Prediction, like all forms of fore-
casting, is prone to error and is seldom foolproof. The same, however, is also
true of all human activities, experimental science included. Predictions made
by informatics are seldom perfect, but neither are predictions about the
weather or stock market forecasts. People live happily with inaccuracies in
both, but many dog-in-a-manger scientists will have nothing to do with theo-
retical or informatics predictions. “It’s not perfect. It’s therefore trash! How
can I trust it?” they say, yet trust implicitly their own inherently error-prone
and discombobulating experiments, and expect others to trust them also.
In physics, accurate and insightful prediction is the goal, and people are
genuinely excited by the convergence of observation and theory. The use of
prediction in biosciences should indeed be managed appropriately: Healthy
skepticism is one thing, but mean-spirited polemics are quite another. There
is no doubt that bioinformatics has delivered, perhaps not what its early pro-
ponents had promised or even what they privately envisaged, but delivered it
certainly has. We shall see abundant evidence of its success here and else-
where in this book. Yet, it is as well to remember that atavistic attitudes still
persist and such assertions must continue to be contested. Although it is clear
that more accurate prediction algorithms are still required, for such new
techniques to be useful routinely they must be tested rigorously for a suffi-
ciently large number of cases that their accuracy can be shown to work to
statistical significance.

How then is this seeming dilemma to be addressed? What is required is
more than just new algorithms and software; it requires the confidence of
experimentalists to exploit the methodology and to commit laboratory experi-
mentation. Despite the best efforts of programmers and software engineers,
the use of many bioinformatics tools remains daunting for laboratory-based
bioscientists. Use of these methods must become routine. It is not only a
matter of training and education, however. These methods must be made
accessible and robust. We have come to a turning point, where a number of
technologies have obtained the necessary level of maturity: postgenomic
strategies on the one hand and predictive computational methods on the
other. Progress will occur in two ways. One will involve closer connections
between bioinformaticians and experimentalists seeking to discover new
drugs. In such a situation, work would progress through a cyclical process of
using and refining models and experiments, at each stage moving closer
toward a common goal of effective, cost-efficient drug and vaccine develop-
ment. The other way is the devolved model, in which methods are made
accessible and used remotely via web-based technology.

Moreover, there is a clear and obvious need for experimental work to be
conducted in support of the development of accurate in silico methods. Bio-
informaticians, like all other scientists physical or biological or social, need
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quality data to work with. Informaticians cannot exist merely on the detritus
dropped from the experimentalists’ table. Rather, experiments must be con-
ducted that specifically address the kind of predictions that bioinformaticians
need to make. The ability to combine in vitro and in silico analysis allows us
to improve both the scope and the power of our predictions, in a way that
would be impossible with literature data alone. If we wish to predict sites of
posttranslational modification or accurate protein subcellular locations, we
need to conduct properly designed, comprehensive initial experiments specifi-
cally for that purpose. To ensure that we produce useful, quality in silico
models and methods, and not the opposite, we need to value the predictions
generated by bioinformatics for themselves and conduct experiments appro-
priately. The potential benefits are obvious: Better data generate better pre-
dictive methods and thusroutinelyimproved biologicallyimportant predictions.
In this way predictions can become stable and reliable tools fully integrated
into the process of drug discovery.

5.3 THE STUFF OF BIOINFORMATICS

Bioinformatics makes a series of synergistic interactions with both client dis-
ciplines (computer science, structural chemistry, etc) and with disciplines that
act in the role of customer (genomics, molecular biology, and cell biology).
Bioinformatics is concerned with activities such as the annotation of biologi-
cal data (genome sequences, for example) and classification of sequences and
structures into meaningful groups and seeks to solve two main challenges:
the prediction of function from sequence and the prediction of structure from
sequence. Put simply, bioinformatics deals with the similarity between mac-
romolecular sequences, typically made manifest in global sequence searches
using software such as FastA [2] or BLAST [3]. Bioinformatics seeks to
identify genes descended from a common ancestor, which share a correspond-
ing structural and functional propinquity. The assumption underlying is thus
an evolutionary one: Functionally similar genes have diverged through a
process of random mutation that results in evolutionarily more distant
sequences being less and less similar to each another. The chain of inference
that connects similarity to common function is complex. Thus successful
functional assignment necessitates significant biological context. Such context
is provided by databases: implicit context present as archived sequences and
explicit context present as annotation.

5.3.1 Databases

Databases are the lingua franca—the common language—of bioinformatics.
Although the kind of data archived may vary, nonetheless, the use, creation,
and manipulation of databases remains the most critical feature of modern-
day bioinformatics, both as a discipline in its own right and as a support for
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current biological science. Available biological data banks are currently pro-
liferating; they now require their own database just to catalog them [4].
Databases began by simply storing the sequences and structures of genes and
proteins. Soon, however, databases such as Swiss-Prot began to add biological
context in the form of annotation, the fundamental character of which is well
illustrated by the observation that currently only around 15% of the Swiss-
Prot database is actually sequence. The remaining 85% is annotation: litera-
ture cross-references, descriptions of biological context, and illustrative notes.
Rationalizing this mountain of biological data is now beyond the scope of
individuals and requires both a global effort and an ever-increasing degree of
automation. Automation, however, carries a heavy price. Functional annota-
tion in protein sequence databases is often inferred from observed similarities
to homologous, annotated proteins. This can lead to errors, particularly when
sequence similarity is marginal. As a result, it is widely believed that there
are now substantial numbers of incorrect annotations throughout commonly
used databases [5]. Moreover, this problem can be compounded by the Mark-
ovian process of “error percolation” [6], whereby the functional annotations
of similar proteins may themselves have been acquired through chains of
similarity to sets of other proteins. Such chains of inference are seldom
recorded, so it is generally impossible to determine how a particular database
annotation has been acquired. Such a situation leads to an inevitable deterio-
ration of quality and poses an ongoing threat to the reliability of data as a
consequence of propagating errors in annotation. Although curators continu-
ally strive to address such errors, users must be constantly on their guard
when inferring function from archived data.

However, bioinformatics is never still, and databases, like other aspects
of the discipline, have moved on. Databases now encompass entities as
diverse as whole genome sequences, transcriptomic and proteomic experi-
ments, and a diversity of other kinds of experimental measurements and
derived biological properties. From a pharmaceutical target-discovery per-
spective, arguably the most important type of derived data are discrimina-
tors of protein family membership. A variety of different analytical
approaches have been used to create such discriminators, including regular
expressions, aligned sequence blocks, fingerprints, profiles, and hidden
Markov models (HMMs) [7]. Each such descriptor has different relative
strengths and weaknesses, and thus produces databases with very different
characters. Such discriminators are deposited in one of the many primary
motif databases (i.e., PROSITE or PRINTS) or secondary motif databases
such as SMART or INTERPRO. An underlying assumption of such data-
bases is that a protein family can be identified by one or more characteristic
sequence patterns. Such patterns are identified in three ways: first, by direct
inspection of aligned protein sequences; second, by using unaligned
sequences as input to programs such as MEME, which can perceive statisti-
cally significant patterns automatically; or third, from aligned sequence with
amotifidentification approach such as PRATT. Motif databases thus contain
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distilled descriptions of protein families that can be used to classify other
sequences in an automated fashion.

5.3.2 Multiple Alignment

At the heart of bioinformatics is the multiple sequence alignment. Its uses
are legion: prediction of three-dimensional structure, either through homol-
ogy modeling or via de novo secondary structure prediction; identification of
functionally important residues; undertaking phylogenetic analysis; and also
identification of important motifs and thus the development of discriminators
for protein family membership. The accuracy of many techniques, such as
those just mentioned, is heavily dependent on the accuracy of multiple
sequence alignments. The building of a multiple sequence alignment begins
with the identification of a sequence/structure corpus. The definition of a
protein family, the key step in annotating macromolecular sequences, pro-
ceeds through an iterative process of searching sequence, structure, and motif
databases to generate a sequence corpus, which represents the whole set of
sequences within the family. In an ideal case, this should contain all related
sequences and structures related to the seed sequence of interest. The process
is iterative and brings together the results of three types of searches: global
sequence searches; such as BLAST, FastA, or a parallel version of Smith—
Waterman; searches against motif databases such as InterPro or PRINTS;
and searches for similar three-dimensional structures using full model
searches, such as DALI, or topology searches, such as TOPS. Once a search
has converged and no more reliable sequences can be added, then the final
corpus has been found and a multiple alignment can be constructed.

5.3.3 Gene Finding

Much of the success of bioinformatics rests on its synergistic interactions with
genomic and postgenomic science. The current, putative size of the human
genome has been revised down from figures in excess of 100,000 to estimates
closer to 40,000 genes. Most recently, a number closer to 20,000 has been
suggested [8]. Clearly, the size of the human genome and the number of genes
within it remain just estimates. Thus the ability to accurately identify genes
remains an unsolved problem, despite rapid progress in recent years. When
dealing with entire genome sequences, the need for software tools, able to
automate the laborious process of scanning million upon million of base
pairs, is essential. When we move from the genome to the proteome, gene
finding becomes protein finding and an order of magnitude more difficult.
The proteome is, however, much larger, principally through the existence of
splice variants [9], but also because of the existence of protein-splicing ele-
ments (inteins) that catalyze their own excision from flanking amino acid
sequences (exteins), thus creating new proteins in which the exteins are linked
directly by a peptide bond [10]. Other mechanisms include posttranslational
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modifications, cleavage of precursors, and other types of proteolytic activa-
tion. The proteome varies according to the cell type and the functional state
of the cell, and it shows characteristic perturbations in response to disease
and external stimuli. Proteomics as a scientific discipline is relatively new
but is based on rather older techniques, combining sophisticated analytical
methods, such as 2D electrophoresis and mass spectrometry, with bioinfor-
matics. Thus proteomics is the study of gene expression at a functional level.
Genomic identification of genes is, however, the beginning rather than the
end. Distinct proteins have different properties and thus different functions
in different contexts. Identifying, cataloging, and characterizing the protein
complement within the human proteome will thus prove significantly more
challenging than annotation of the genome.

5.4 FINDING TARGETS FOR THERAPEUTIC INTERVENTION

An important recent trend has been the identification of “druggable” targets.
Databases of nucleic acid and protein sequences and structures have now
become available on an unparalleled, multigenomic scale. To capitalize on
this, attention has focused on the ability of such databases accurately to
compare active sites across a range of related proteins, and thus allow us to
select and validate biological targets, to control drug selectivity, and verify
biological hypotheses more precisely. What is a druggable receptor? This is
dependent on the drug of interest: The properties required of a short-acting
drug are very different from that of long-acting, orally bioavailable medicine.
The G protein-coupled receptor (GPCR) is an archetypal “druggable” target,
with its small, hydrophobic, internal binding site and crucial physiological
roles. By “druggable” we mean proteins exhibiting a hydrophobic binding site
of defined proportions, leading to the development of drugs of the right size
and appropriate physicochemical properties. The term druggable relates both
to the receptor structure and also to the provenance of a protein family as a
source of successful drug targets. Estimates put the number of druggable
receptors somewhere in the region of 2000 to 4000 [11]. Of these, about 10%
have been extensively examined to date, leaving many, many receptors left to
explore. Beyond the human genome, there are other “druggable” receptors
now receiving the attention of pharmaceutical companies. Bacteria, fungi,
viruses, and parasites are all viable targets for drug intervention. As the
number of antibiotic-resistant pathogens increases, the hunt for new antimi-
crobial compounds, and thus the number of “druggable” microbial receptors,
will also expand.

Set the task of discovering new, previously unknown “druggable” recep-
tors, how would we go about it? In particular, how would we find a GPCR?
The first step toward functional annotation of a new GPCR sequence usually
involves searching a primary sequence database with pairwise similarity
tools. Such searches can reveal clear similarities between the query sequence
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and a set of other sequences in the database. An ideal result will show un-
equivocal similarity to a well-characterized protein over its whole length.
However, an output will regularly reveal no true hits. The usual scenario falls
somewhere between these extremes, producing a list of partial matches that
will either be to uncharacterized proteins or have dubious annotations. The
difficulty lies in the reliable inference of descent from a shared ancestor and
thus extrapolation to a common biological function. The increasing size of
sequence databases increases the probability that relatively high-scoring, yet
random, matches will be made. Even if a verifiable match is made, it is difficult
for pairwise similarity methods to distinguish paralogs from orthologs. More-
over, low-complexity matches can dominate search outputs. The multidomain
nature of proteins is also a problem: When matching to multidomain proteins,
it is not always clear which domain corresponds to the search query. Thus
achieving trustworthy functional assignments remains a daunting problem,
and it has become common practice to extend search strategies to include
motif- or domain-based searches of protein family databases, such as PRINTS
or INTERPRO. Because family discriminators can detect weaker similarity,
and can usefully exploit the differences between sequences as well as their
similarities, searching family databases can be more sensitive and selective
than global sequence searching. Bioinformatics can help in validation through
the design and analysis of high-throughput testing, such as targeted transcrip-
tomic experiments.

5.5 BIOINFORMATICS AND VACCINE DISCOVERY

Immunoinformatics is a newly emergent subdiscipline within the informatic
sciences that deals specifically with the unique problems of the immune
system. Like bioinformatics, immunoinformatics complements, but never
replaces, laboratory experimentation. It allows researchers to address, in a
systematic manner, the most important questions in the still highly empirical
world of immunology and vaccine discovery.

The first vaccine was discovered by Edward Jenner in 1796, when he used
CcOwWpoX, a related virus, to build protective immunity against viral smallpox
in his gardener’s son. Later, Pasteur adopted “vaccination”—the word coined
by Jenner for his treatment (from the Latin vacca: cow)—for immunization
against any disease. In 1980, the World Health Organisation declared that
worldwide vaccination had freed the world of smallpox. A vaccine is a molec-
ular or supramolecular agent that induces specific, protective immunity (an
enhanced adaptive immune response to subsequent infection) against micro-
bial pathogens, and the diseases they cause, by potentiating immune memory
and thus mitigating the effects of reinfection. It is now widely accepted that
mass vaccination, which takes into account herd immunity, is the most effica-
cious prophylactic treatment for contagious disease. Traditionally, vaccines
have been attenuated or “weakened” whole pathogen vaccines such as BCG
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for TB or Sabin’s polio vaccine. Issues of safety have encouraged other vaccine
strategies to develop, focusing on antigen and epitope vaccines. Hepatitis B
vaccine is an antigen—or subunit—vaccine, and many epitope-based vaccines
have now entered clinical trials. A generally useful polyepitope vaccine might
contain several T cell epitopes and several B cell epitopes, plus nonprotein-
aceous “danger signals,” and may be a synthetic vaccine or a natural antigen,
delivered as a protein, via live viral vectors, or as raw DNA, possibly accom-
panied by administration of an adjuvant, a molecule or preparation that
exacerbates immune responses.

However, despite their practical and societal value, vaccines remain only
a small component of the global pharmaceutical market ($5 billion out of
$350 billion sales in 2000). The vaccine market is dominated by just four large
manufacturers: GlaxoSmithKline, Aventis Pasteur, Wyeth, and Merck & Co.
There is, however, a strong resurgence of interest in vaccines, with a growing
cluster of small vaccine companies and biotech firms, led by Chiron.

Vaccinology and immunology are now at a turning point. After centuries
of empirical research, they are on the brink of reinventing themselves as a
genome-based, quantitative science. Immunological disciplines must capital-
ize on an overwhelming deluge of data delivered by high-throughput, postge-
nomic technologies, data that are mystifyingly complex and delivered on an
inconceivable scale. High-throughput approaches are engineering a paradigm
shift from hypothesis to data-driven research. Immunovaccinology is a rational
form of vaccinology based on our growing understanding of the mechanisms
that underpin immunology. It too must make full use of what postgenomic
technologies can deliver.

Hitherto, bioinformatics support for preclinical drug discovery has focused
on target discovery. Reflecting the economics, support for vaccines has not
flourished. As interest in the vaccine sector grows, this situation is beginning
to alter. There have been two main types of informatics support for vaccines.
The first is standard bioinformatics support, technically indistinguishable from
support for more general target discovery. This includes genomic annotation,
not just of the human genome, but of pathogenic and opportunistic bacterial,
viral, and parasite species. It also includes immunotranscriptomics, the applica-
tion of microarray analysis to the immune system. The other type of support
is focussed on immunoinformatics and addresses problems such as the accurate
prediction of immunogenicity, manifest as the identification of epitopes or the
prediction of whole protein antigenicity. The immune system is complex and
hierarchical, exhibiting emergent behavior at all levels, yet at its heart are
straightforward molecular recognition events that are indistinguishable from
other types of biomacromolecular interaction. The T cell, a specialized type of
immune cell mediating cellular immunity, constantly patrols the body seeking
out foreign proteins originating from pathogens. T cells express a particular
receptor: the T cell receptor (TCR), which exhibits a wide range of selectivities
and affinities. TCRs bind to major histocompatibility complexes (MHCs)
presented on the surfaces of other cells. These proteins bind small peptide
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fragments, or epitopes, derived from both host and pathogen proteins. It is
recognition of such complexes that lies at the heart of both the adaptive, and
memory, cellular immune response. The binding of an epitope to a MHC
protein, or a TCR to a peptide-MHC complex, or an antigen to an antibody,
is, at the level of underlying physicochemical phenomena, identical in nature to
drug-receptor interactions. Thus we can use techniques of proven provenance
developed in bioinformatics and computational chemistry to address these
problems. Immunogenicity manifests itself through both humoral (mediated
through the binding of whole protein antigens by antibodies) and cellular
(mediated by the recognition of proteolytically cleaved peptides by T cells)
immunology. Whereas the prediction of B cell epitopes remains primitive, or
depends on an often-elusive knowledge of protein structure, many sophisticated
methods for the prediction of T cell epitopes have been developed [12].

We have reached a turning point where several technologies have achieved
maturity: predictive immunoinformatics methods on the one hand and post-
genomic strategies on the other. Although more accurate prediction algo-
rithms are needed, covering more MHC alleles in more species, the paucity
of convincing evaluations of reported algorithms is a confounding factor in
the take-up of this technology: For immunoinformatics approaches to be used
routinely by experimental immunologists, methods must be tested rigorously
for a large enough number of peptides that their accuracy can be seen to work
to statistical significance. To enable this requires more than improved methods
and software; it necessitates building immunoinformatics into the basic strat-
egy of immunological investigation, and it needs the confidence of experimen-
talists to commit laboratory work on this basis.

The next stage will come with closer connections between immunoinfor-
maticians and experimentalists searching for new vaccines, both academic
and commercial, conducted under a collaborative or consultant regime. In
such a situation, work progresses cyclically using and refining models and
experiments, moving toward the goal of effective and efficient vaccine devel-
opment. Methods that accurately predict individual epitopes or immunogenic
proteins, or eliminate microbial virulence factors, will prove to be crucial
tools for tomorrow’s vaccinologist. Epitope prediction remains a grand scien-
tific challenge, being both difficult, and therefore exciting, and of true utilitar-
ian value. Moreover, it requires not only an understanding of immunology
but also the integration of many disciplines, both experimental and theoreti-
cal. The synergy of these disciplines will greatly benefit immunology and
vaccinology, leading to the enhanced discovery of improved laboratory
reagents, diagnostics, and vaccine candidates.

5.6 CHALLENGES

Just as the pharmaceutical industry is faced with seemingly intractable
problems of addressing rapidly diminishing time to market as well as ever-
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escalating regulatory constraints, so bioinformatics is seeking to answer
equally difficult questions, albeit ones more technical in nature. How does
bioinformatics integrate itself with the burgeoning world of systems biology,
with immunology, with neuroscience? How will it cope with large amounts
of data generated by an array of postgenomic high-throughput technologies:
genomics, proteomics, microarray experiments, and high-throughput screen-
ing? How will it deal with SNPs and polymorphism and manipulate the even
greater volume of data inherent within personalized medicine and pharma-
cogenomics? However, arguably the most pressing need is to effectively move
beyond cataloging individual data items, be they sequences, structures,
genomes, or microarray experiments, and to explore the inherent interrela-
tionships between them. People have spoken for some time now about data
mining genomes. Other “—omes” now abound: transcriptomes, proteomes,
metabolomes, immunomes, even chemomes. We could add another, all-
encompassing “—ome”: the “infome,” which goes beyond the narrow confines
of sequence or structure data and is, in the widest sense, the sum of all bio-
logical and chemical knowledge. It is a goal that challenges the growth of
knowledge management as it seeks to treat this huge, heterogeneous volume
of data. There are currently two main practical thrusts to this endeavor: text
mining and ontologies. The pharmaceutical company is one of the few orga-
nizations that can, within molecular science, hope, through its intrinsic scale
and willingness to invest in the future, to pursue such an objective.

Text mining is, superficially at least, abstracting data from the literature in
an automated manner. Much of the data that goes into sequence and structure
databases, is, because of the requirements of journal editors and the largesse
of publicly funded genome sequencers, deposited directly by their authors.
However, much of interest—the results of tens of thousands of unique experi-
ments stretching back over the decades—is still inaccessible and hidden away,
locked into the hard copy text of innumerable papers. As the scientific litera-
ture has moved inexorably from paper to an electronic on-line status, the
opportunity arises of interrogating automatically with software. Despite the
effort expended, not to mention the establishment of text mining institutes,
the results have not been that remarkable. The goal is doubtless a noble and
enticing one, but so far little of true utility has been forthcoming. People—
indeed people in some number—are still an absolute necessity to properly
parse and filter the literature.

Research into so-called ontologies is also currently very active. Ontologies
can be used to characterize the principal concepts in a particular discipline
and how they relate one to another. Many people believe they are necessary
if database annotation is to be made accessible to both people and software,
but also in facilitating more effective and efficient data retrieval. The well-
known “Gene Ontology” consortium, or GO, defines the term ontology as:
“. .. ‘specifications of a relational vocabulary’. In other words they are sets of
defined terms like the sort that you would find in a dictionary, but the terms
are networked. The terms in a given vocabulary are likely to be restricted to
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those used in a particular field, and in the case of GO, the terms are all bio-
logical.” Should one wish to find all G protein-coupled receptors in a sequence
set, be it a database or an annotated genome, then searching with software
that can recognize that such proteins might be labeled as “GPCR?” or “opsin”
or “7TM protein” or even as “transmembrane protein” would be helpful in
identifying all targets. This is a somewhat trivial example, but it illustrates
both the potential utility of ontologies and also the potential pitfalls. For
example, “transmembrane protein” would include all GPCRs, but many other
proteins as well; after all, up to 30% of a genome will be membranous. This
“toy” ontology uses a set of synonyms to identify the same core entity:
“GPCR?” = “G protein-coupled receptor”, etc. Relationships exist that relate,
hierarchically, concepts together: An “opsin” is a form of “GPCR.” However,
more serious ontologies require semantic relations with a network, graph, or
hierarchy that specifies not just how terms are connected but also how they
are related at the level of meaning. Unless this is undertaken properly, even
the toy ontology outlined above would become both meaningless and without
utility.

The GO definition is quite distinct from other meanings of the word. A
dictionary defines an ontology as:

1. A science or study of being: specifically, a branch of metaphysics relating to
the nature and relations of being; a particular system according to which prob-
lems of the nature of being are investigated; first philosophy. 2. A theory con-
cerning the kinds of entities and specifically the kinds of abstract entities that
are to be admitted to a language system.

In artificial intelligence (AI), an ontology is an explicit specification of a
concept. In the context of Al, an ontology can be represented by defining a
set of representational terms. In such an ontology, definitions associate named
entities (e.g., classes, relations, or functions) with human-readable text that
describes the associated meaning; the interpretation and use of terms are
likewise constrained. Others dismiss ontologies as little more than restricted
vocabularies. The point is that ontology should be either useful or interesting
or both. How one distinguishes between a good ontology and a poor ontology
is more difficult.

Arguably, the other great challenge for informatics is to integrate itself with
science conducted on a global scale while at the same time addressing science
conducted on the most local level. One global challenge is provided by peer-
to-peer computing (the sharing of resources between computers, such as
processing time or spare storage space), what is generally known as screen-
saver technology. Internet-based peer-to-peer applications position the
desktop at the center of computing, enabling all computer users to participate
actively in the Internet rather than simply surfing it. Another global strand
involves the emergent grid. Grid computing is a fundamental shift in the
economic and collective nature of computing. It promises that the differing
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needs of high-performance computing can be integrated seamlessly. High
performance—sometimes erroneously labeled supercomputing—delivers
ultrafast teraflop processing power and terabyte storage. Many bioinformatics
problems—mainly, but not exclusively, computer-intensive simulations—cry
out for this previously unattainable performance: atomistic simulation of
drug-receptor binding for virtual screening purposes; simulations of protein-
protein interaction for genome annotation; dynamic simulation of protein
folding; numerical simulation of primary and secondary metabolism, gene
regulation, and signaling, to name but a few. This is, however, only skimming
the surface: Only when these techniques become common will their full use-
fulness become apparent.

Grid computing is thus an ambitious worldwide effort to make this a
reality. It visualizes an environment in which individual users can access
computers and databases transparently, without needing to know where they
are located. The grid seeks to make all computer power available at the point
of need. Its name is an analogy to the power transmission grid: Should you
wish to switch on a light or run a domestic refrigerator, it is not necessary to
wait while current is downloaded first. Early steps have been faltering yet
show promise. Thus far, some large-scale science has been conducted through
distributed global collaborations enabled by the Internet. A feature of such
collaborative enterprises is their need to access large data collections and
large computing resources and to undertake high-performance visualization.
Clearly, a much improved infrastructure is needed to grid computing. Scien-
tists will need ready access to expensive and extensive remote facilities,
including routine access to teraflop computers.

The local level is epitomized on the one hand by laboratory information
management systems and local data architectures and on the other by elec-
tronic laboratory notebooks. Like all science, bioinformatics must make but
also use data. Data sharing is a particular issue for biological science as it
fully engages with high-throughput data generation. As transcriptomics, pro-
teomics, and metabolomics generate data on an unprecedented scale, making
such data fully transparent on the local level of e-notebooks is the essential
first step in making it available to the wider world.

Although operating on vastly different scales, the challenges exhibited by
both the local and the global level share an important degree of commonality:
Both require transparent data sharing and anonymous advanced interopera-
bility. As user requirements and underlying I'T are constantly changing, true
progress sometimes seems just as elusive as it ever was. Newly created data,
produced on an industrial scale by factory biology, as well as historical data
still locked away in the hard copy, or even soft copy, literature, must be made
available corporation-wide or worldwide in an accessible, useable form for
the benefit of all. We see in this the convergence of both global and local
computing issues but also the potential utility of text mining and ontologies
to build a degree of semantic understanding into the infrastructure itself.
Consider this: A medical scientist records a single clinical observation on a
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palmtop device, which is copied to a central database via a wireless LAN and
is integrated with like information from a hundred other observers, together
with data extracted from a 40-year-old microbiology journal, thus allowing a
bioinformatician to run a dynamic metabolomic simulation of host-pathogen
interactions. This in turn informs critical decision making within an antibiotic
discovery project. Such a reality, manifest as routine, is still someway off, but
the concept is nonetheless compelling.

5.7 DISCUSSION AND CONCLUSION

Genomics has transformed the world. Or, rather, it has altered the intellectual
landscape of the biosciences: Its implications suggest that we should be able
to gain access to information about biological function at a rate and on a scale
previously inconceivable. Of course, our hopes and expectations remain
unfulfilled. Like Watson and Crick’s 1953 structure of DNA, the complete
sequencing of the human genome has simply suggested more questions than
it answers: It is the beginning not the end. What we can conceive of still far
exceeds what can actually be done. Experimental science is playing catch-up,
developing postgenomic strategies that can exploit the information explosion
implicit within genomics. Biology remains at risk of being overwhelmed by
the deluge of new data on a hitherto unknown scale and complexity. The trick
is to pull out the useful and discard the worthless, yielding first knowledge
and then true understanding and the ability to efficiently manipulate biologi-
cal systems.

One of the tasks of modern drug research is to evaluate this embarrassment
of riches. Can we reduce incoherent data into usable and comprehensible
information? Can we extract knowledge from this information? How much
useful data is locked away in the literature? Can we ultimately draw out
understanding from the accumulation of knowledge? One way that we can
attack this problem is through computer-based informatics techniques, includ-
ing bioinformatics. This is not meant, of course, to replace human involve-
ment in the process. It is merely a powerful supplement compensating for an
area where the human mind is relatively weak: the fast, accurate processing
of huge data sets. Bioinformatics has already made significant contributions
to drug discovery and has begun to do the same for vaccines.

Bioinformatics requires people. It always has, and probably always will. To
expect informatics to behave differently from experimental science is, at best,
hopeful and overly optimistic and, at worse, naive or disingenuous. Experi-
mental science is becoming ever more reliant on instrumental analysis and
robotics, yet people are still required to troubleshoot and to make sense of
the results. Much the same holds for bioinformatics: We can devolve work
that is routine to automation—scanning genomes, etc.—but people are still
needed to ensure such automation works and to assess the results. New
methods need to be developed and their results used and applied. There is
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only so much that putting tools on the desktops of experimentalists can
achieve, useful though this is in both a tactical and a strategic sense. Annota-
tion and reannotation is, and should be, a never-ending occupation. For that
which we automate, sensible and useful ontologies still need to be built and
verified. The dynamic interplay between people and algorithms remains at
the heart of bioinformatics. Long may it be so: That’s what makes it fun.

Academic bioinformaticians often forget their place as an intermediate
taking, interpreting, and ultimately returning data from one experimental
scientist to another. There is a need for bioinformatics to keep in close touch
with wet laboratory biologists, servicing and supporting their needs, either
directly or indirectly, rather than becoming obsessed with their own recondite
or self-referential concerns. Moreover, it is important to realize, and reflect
upon, our own shortcomings. Central to the quest to achieve automated gene
elucidation and characterization are pivotal concepts regarding the manifes-
tation of protein function and the nature of sequence-structure and sequence-
function relations. The use of computers to model these concepts is limited
by our currently limited understanding, in a physicochemical rather than
phenomenological sense, of even simple biological processes. Understanding
and accepting what cannot be done informs our appreciation of what can be
done. In the absence of such an understanding, it is easy to be misled, as
specious arguments are used to promulgate overenthusiastic notions of what
particular methods can achieve. The road ahead must be paved with caution
and pragmatism. The future belongs, or should belong, to those scientists who
are able to master both computational and experimental disciplines.
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6.1 INTRODUCING SYSTEMS BIOLOGY AND
SYSTEMS PHARMACOLOGY

There is rarely one target for a disease, and drug design strategies are increas-
ingly focused on multiple targets [1]. Developing effective treatments that do
not interfere with other biological pathways is therefore difficult. However,
there are ways to assess this impact beyond the target protein. One approach
is to measure many parameters under well-defined conditions, analyze with
computational biology methods, and produce a model that may also help to
understand the likely side effects [2]. High-throughput screening data are
routinely generated early in drug discovery for molecules of interest to deter-
mine biological activities toward both the desirable and undesirable targets
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and to understand their physicochemical properties. Higher-content biologi-
cal data are also generated after cells or animals are treated with a molecule
and the levels of metabolites, genes, and proteins are determined. The com-
bination of the reductionist approach for a molecule binding to one or more
particular proteins with the global effect on metabolism, gene expression, and
transcription as a whole system is therefore important for understanding
efficacy and toxicity. Systems biology aims to quantify all of these molecular
elements of a biological system and integrate them into graphical models [3].
Systems perspectives have been applied in most scientific fields such that
“studying biology as an integrated system of genetic, protein, metabolite, cel-
lular, and pathway events that are in flux and interdependent” has become a
catch-all definition. Systems biology therefore requires the integration of
many different scientific areas and complex data types to result in a complete
picture and ultimately can be used to derive valuable knowledge. The evolu-
tion of systems biology approaches has been recently described to show the
convergence of mainstream “data-rich” molecular biology and data-poor
systems analysis [4]. The systems approach can be applied beyond pharma-
ceutical research to areas such as nutrigenomics, as the human diet consists
of complex mixtures of molecules that are likely to impact gene responses.
Such an approach is useful in understanding the risk-benefit analysis of bioac-
tive foods. Biomarkers will also be required to determine effects that predict
chronic effects of molecules we are exposed to [5]. Within systems biology
there are simultaneously growing computational fields, such as computational
molecular biology [6], the modeling of genetic and biochemical networks [7]
that covers aspects from alignment of sequences, modeling activity of genes,
gene expression, cell cycle regulation, proteomics, and others.

Systems biology can therefore be considered as the application of systems
theory to genomics as well as the creation of an understanding of the relation-
ships between biological objects. We are therefore seeing a shift in focus from
molecular characterization to an understanding of functional activity in
genomics. Systems biology provides methods for understanding the organiza-
tion and dynamics of the genetic pathways [8]. The major focus of systems
biology to date has been statistics and database generation [9]. Systems phar-
macology describes the integrated responses resulting from complex interac-
tions between molecules, cells, and tissues. Such studies are important because
isolated molecules and cells in vitro do not display all of the properties pos-
sessed in vivo reflected by the function of intact tissues, organs, and organ
systems.

A systems level approach can be used to address three questions: What are
the parts? How do they work? How do they work together to perform their
biological function? The application of systems approaches to physiology has
not been widely accepted, however. Although within physiology departments
physiology and integrative research were recognized as key components of
the NIH road map, the importance of interdisciplinary research to generate
systems models has also been stressed previously [10]. Systems approaches
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have been applied to make use of the vast amounts of qualitative and quanti-
tative biological data collated in the various databases along with network-
building algorithms. These can be used to build predictive signatures for
diseases following treatment of cell or tissues with molecules. Similarly,
microarray data from cells or animals treated with drugs can also be used to
generate pathway maps or gene network signatures [11-14]. An early attempt
to illustrate the many levels of relationships between genetics and physiology
was made by Palsson [15], who captured and linked process databases from
genes to proteins, to whole cells. Although biological systems contain many
nonlinear processes that are continually interacting, a reductionist viewpoint
is to treat parallel systems as an engineering process [16]. A systems-based
approach has also been suggested for protein structural dynamics and signal
transduction [17]. Simple protein networks can display complex behavior. For
example, proteins in gene regulatory networks and signal transduction path-
ways show cooperative responses including allosteric protein conformational
changes [17].

Numerous methods are used to connect information from functional
genomic studies to biological function. Cluster analysis methods have tradi-
tionally been used for inferring the correlation between genes and have been
integrated with existing information on biological pathways to reconstruct
novel biological networks [18]. At least three theoretical methods for under-
standing all the genes and proteins exist: (1) kinetic models of small isolated
circuits [19, 20], (2) gene expression arrays [21], and (3) a suggested ensemble
approach using Boolean networks of genes that can be modeled as on-off
alongside microarrays that enable the measurement of sophisticated dynami-
cal features or real gene networks [22]. Systems biology approaches have been
applied to understanding the network responses of DNA-damaging agents as
well as other drugs. Most studies work with yeast, using large experiments
with multiple treatments and hundreds of microarrays that can also use
mutant strains. Using networks to describe cellular responses to damage helps
account for different levels of influence in the cells. It is suggested that network
responses may dictate the efficiency of DNA repair, genome stability and
viability after damage. Small perturbations can therefore have more distant
effects, and it is also likely because of redundancy that multiple proteins can
have the same effect. A network approach may help researchers connect the
many genes and proteins implicated in damage response [23]. The systems
pharmacology approach includes in silico biology, biological pathways, disease
modeling, and medical physiology incorporating cell and organ models.

6.2 SYSTEMS BIOLOGY: COMMERCIAL APPLICATIONS

A recent review has described the numerous commercial concerns that are
involved in systems biology by providing either software or services [24].
Large, curated interaction databases combined with powerful analytical
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and network building tools are commercially available from companies like
GeneGo Inc. (MetaCore™), Ariadne Genomics Inc. (Pathway Studio), Inge-
nuity Inc. (Pathways Analysis™), and Jubilant Biosys (Path Art™) that cover
human metabolism, regulation, and signaling (Table 6.1). Currently there are
hundreds of pathway databases, but they lack uniform data models and access,
making pathway integration difficult (see the Pathway resource list, http://
cbio.mskcc.org/prl). These tools can readily enable the visualization of global
cellular mechanisms that drive the differences in gene expression by overlay-
ing these data on the networks to discover relationships in such complexity.
To date these approaches have been applied to modeling nuclear hormone
receptor interactions [25], the generation of compound-related gene network
signatures [26], and combining networks with metabolite prediction tools
[27]. These systems pharmacology methods have a role in drug discovery
when combined with the other computational and empirical approaches to
identify biomarkers and understand interindividual variability in response to
drugs [28, 29].

Several companies such as Gene Network Sciences [30], Entelos [31], and
BioSeek [32] have emerged in recent years that focus on simulating cellular
pathways, organs, whole cells, or whole diseases. Gene Network Sciences has
developed an approach to predicting how external perturbations to the genetic
and protein pathways of cells change cell and disease phenotypes, together with
the molecular profiles underlying the altered phenotypes. They use a two-
pronged approach of (1) inferring unknown pathway relationships from experi-
mental data (inference modeling can both identify new and confirm existing
biological relations with approaches based on reverse engineering, machine
learning algorithms, and data-mining techniques) and (2) creating mechanistic
dynamic simulations of known pathways. The mechanistic modeling approach
implements known biology via dynamical simulations of pathways, cells, and
organ- and tissue-level models. This approach determines the mechanism of
action, biomarkers, and tissue specificity of new chemical entities, enhancing
the accuracy of the predictive outputs. These mechanistic simulations are pro-
posed to facilitate the rapid testing of “what if” hypotheses and become
increasingly accurate through iteration with validation experiments. To date
this company has described modeling the human cancer cell [30], using the
Diagrammatic Cell Language to create a network model of interconnected
signal transduction pathways and gene expression circuitry that control human
cell proliferation and apoptosis. This model included receptor activation and
mitogenic signaling, initiation of cell cycle, and passage of checkpoints and
apoptosis. The efficacy of various drug targets was evaluated with this model,
and experiments were performed to test the predictions.

A second company in this arena, Entelos, has over the past decade devel-
oped numerous disease PhysioLabs. These include comprehensive disease
maps that are connected by validated mathematical equations, a knowledge
management infrastructure with links to papers and documentation, and
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finally a complete virtual research workbench. This latter component allows
the selection of virtual patients, targets, and the performance of simulations.
To date they have produced an asthma model, a cardiac model, an obesity
model, a rheumatoid arthritis model, and an adipocyte model that have been
used with a number of pharmaceutical partners (Table 6.2).

BioSeek has analyzed a limited number of genes in cultured primary endo-
thelial cells and used this model to assess different treatments. Seven proteins
under four perturbing conditions could capture pathways for 25 different
proteins. The networks were captured by multidimensional scaling using
Graphiz. The overall approach is called BloMAP and represents a method to
simplify systems biology [32, 33]. Other companies (such as Icoria and BG
Medicine) have already generated or are generating large complex data sets
and using network type visualization for analysis. These platforms are sug-
gested to enable discovery scientists to analyze data streams from gene expres-
sion, biochemical profiles, and quantitative tissue analysis and to map them
into biological pathways useful for biomarker identification for disease areas
such as diabetes, obesity, and liver injury.

An alternative approach to the use of complex data sets for the evaluation
of drug- and chemical-induced changes in cellular pathways has been taken
by several companies, including Rosetta Inpharmatics [34], GeneLogic [35],
and Iconix[36], which have established large chemogenomic databases com-
prised of a broad spectrum of perturbations to the genetic network that are
obtained by chemical or mutational insult. In this approach, the gene expres-
sion profile of exposure to a test pharmaceutical compound is compared
against the reference profiles in the compendium database. Pattern-matching
algorithms are then applied to predict the expression signature and cellular
pathways that are affected by the new drug [37, 38]. For new compounds that
have been identified by target-based screening, this approach could identify
secondary or “off-target” pathways and thus indicate potential adverse effects
of the drug. In addition, this approach may be particularly useful for new
compounds identified by phenotypic screening with high-throughput screen-
ing cell-based assays or for similar situations in which the drug target is not
immediately evident [39].

6.3 APPLICATIONS OF GENE NETWORK AND
PATHWAY TOOLS

Pathway and gene network tools have found numerous applications for under-
standing gene and protein expression in various circumstances, whether
during disease or after treatment with a particular molecule. A recent review
has described the tools for building biological networks that can be used for
the analysis of experimental data in drug discovery [40]. The putative applica-
tions include target identification, validation, and prioritization. The methods
available can be used to define toxicity biomarkers and for lead optimization
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or candidate selection. Clinical data can also be analyzed and may be useful
to provide new indications for marketed drugs or as a means to perform
postmarketing studies.

One of the few instances where systems biology research from a major
commercial concern (namely Proctor and Gamble) has been published con-
cerns a study using gene expression data to identify stress response networks
in Mycobacterium tuberculosis before and after treatment with different
drugs [41]. The research combined the KEGG and BioCyc protein interaction
databases with previously published expression data and a k-shortest path
algorithm. It was found that networks for isoniazid and hydrogen peroxide
indicated a generic stress response that highlighted unique features. The
authors suggested that differential network expression can be used to assess
drug mode of action with similar networks indicating similar mechanisms
[41]. A second recently published study combined microarray expression data
from HeLa cells with Ingenuity pathways software to understand the expres-
sion of DBC2. The authors were able to find two networks that had at least
50% of the genes that were affected by DBC2 expression. These corre-
sponded to cell cycle control, apoptosis, and cytoskeleton and membrane
trafficking [12]. Several other applications of this software have also been
published (Table 6.1).

A growing number of studies to date presented as meeting abstracts have
used MetaCore software for genomic and proteomic data analysis. Yang
et al. used a proteomic analysis to examine the targets of oxidative stress in
brain tissue from the PS1/APP mouse model for Alzheimer disease and visu-
alized these targets as a network and highlighted the proteins that are oxida-
tively modified [42]. Waters et al. integrated microarray and proteomic data
studies with pathway analysis and network modeling of epidermal growth
factor signaling in human mammary epithelial cells and identified new cross
talk mediators Src and matrix metalloproteinases as responsible for modifica-
tion of the extracellular matrix [43]. Lantz et al. studied protein expression
in rats exposed to arsenic in utero. Twelve proteins involved in signal trans-
duction, cytoskeleton, nuclear organization, and DNA repair were differen-
tially expressed and could be readily connected as a network to identify the
potential involvement of RACI, Pyk2, CDC42, JNK, and occludins as sites
of action for arsenic [44]. Nie et al. produced a gene signature for nongeno-
toxic carcinogens after establishing a database of more than 100 hepatotoxi-
cants and used a stepwise exhaustive search algorithm. Ultimately, six genes
were selected to differentiate nongenotoxic carcinogens from noncarcinogens
[45]. A mouse emphysema model treated with elastase was used to show 95
genes that were differentially expressed after 1 week [46]. These data were
analyzed with pathway maps and gene networks to show that the principal
nodes of gene regulation were around the vitamin D receptor, Ca**, MMP13,
and the transcription factors c-myc and SP1. The myometrial events in guinea
pigs during pregnancy were studied, using gene expression, signaling and
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metabolic maps, and gene networks to provide a global and comprehensive
analysis for visualizing and understanding the dynamics of myometrial activa-
tion [47]. Further work from the same group has focused on G proteins,
showing increased GTPase activity during pregnancy in guinea pigs, an effect
also seen with estradiol [48]. The data in this study were visualized on meta-
bolic maps and gene networks.

An algorithm for the reconstruction of accurate cellular networks
(ARACNe) was recently described and used to reconstruct expression pro-
files of human B cells. ARACNe identifies statistically significant gene-gene
coregulation and eliminates indirect interactions. Using 336 expression pro-
files after perturbing B cell phenotypes, a network was inferred. MYC
appeared in the top 5% of cellular hubs, and the network consisted of 40%
of previously identified target genes [49]. HCN-1A cells treated with different
drugs were used to produce a compendium of gene signatures that was used
to generate “sampling over gene space” models with random forests, linear
discriminant analysis, and support vector machines. This approach was then
used to classify drug classes, potentially representing a novel method for drug
discovery as it discriminates physiologically active from inactive molecules
and could identify drugs with off-target effects and assign confidence in their
further assessment [38].

With a similar compendium-based comparative approach, the oxidative
stress-inducing potential of over 50 new proprietary compounds under inves-
tigation at Johnson and Johnson was predicted from their matching gene
expression signatures [50]. This study is particularly informative in that it was
able to distinguish distinct mechanisms of action for diverse hepatotoxicants,
all of which similarly resulted in oxidative stress, an adverse cellular condi-
tion. Initial successes such as this example suggest that gene expression sig-
natures have potential utility in the detection of presymptomatic clinical
conditions and in the molecular diagnosis of disease states. The ability to
group patients who share a common disease phenotype or set of clinical
symptoms by their gene expression signature is a critical milestone in achiev-
ing the goal of personalized and predictive medicine [51].

Numerous mechanisms have been proposed for hypertension, and sub-
sequently there are many microarray studies with large amounts of data but
little new information on mechanism to date. Therefore more complete sets
of data and integration that may contribute to better therapeutic outcome
and disease prevention are needed [52]. Ninety-two genes associated with
atherosclerosis were used to generate a network with KEGG and Biocarta
previously. Thirty-nine of these genes are in pathways containing at least
three atherosclerosis genes, which represented 16 biological and signaling
pathways with 353 unique genes. Numerous genes not previously associated
with atherosclerosis were indicated on the network [53]. In contrast, the use
of the commercially available tool MetaCore with this gene list enabled the
mapping of 89 genes on networks, and 68 of these genes were on maps, with
only three missing from this mapping. This set of genes was then used with
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the analyze networks algorithm to generate multiple networks. The network
with the largest G-score (Fig. 6.1A, 35.72, p = 6.1e"°') was different from that
with the highest p-value (Fig. 6.1B, 13.44, p = 2.7¢””"). The former contained
APOE and APOAL1 as central hubs and also mapped onto the GO processes
for cholesterol homeostasis (p = 10e™*) and cholesterol metabolism (p =
6.4¢7"), whereas the latter had NF-kB as a hub gene and mapped to the
inflammatory response (p = 1.6e) and the immune response (3.4e7").
There were several genes that were absent from the initial gene list identified
in the original publication [53] but appear on either network including C/
EBPo, EDNRp, C/EBP, CRP, Brcal, CYP27B1, CYP2CS8, PSAP, Calreticu-
lin, Serglycin, MAPK7, MAPK1/3, o 2M, APP, Amyloid 3, and Matrilysin.
These may represent future genes to be assessed for their importance in
hypertension.

Understanding the gene networks that can be generated in cells or whole
organisms by single compounds enables the generation of signature networks
[11]. Numerous recent studies have generated microarray data after treat-
ment with xenobiotics (Table 6.3) that can be used with network and pathway
database tools. Many other examples that have been recently summarized
could also be used in this way [54]. For example, the anticancer activity of
tanshinone ITA was evaluated